1. |
Li CQ, Huang B, Luo G, et al. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. J Mater Sci Mater Med, 2010, 21(2): 741-751.
|
2. |
Koepsell L, Zhang L, Neufeld D, et al. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol Biosci, 2011, 11(3): 391-399.
|
3. |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
|
4. |
Wan Y, Feng G, Shen FH, et al. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials, 2008, 29(6): 643-652.
|
5. |
Mercuri JJ, Gill SS, Simionescu DT. Novel tissue-derived biomimetic scaffold for regenerating the human nucleus pulposus. J Biomed Mater Res A, 2011, 96(2): 422-435.
|
6. |
Zhang R, Ma PX. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci, 2004, 4(2): 100-111.
|
7. |
许海委, 徐宝山, 杨强, 等. 细胞共培养法诱导兔脂肪来源干细胞向软骨细胞分化的实验研究. 中国修复重建外科杂志, 2013, 27(2): 193-198.
|
8. |
杨强, 彭江, 卢世璧, 等. 软骨脱细胞基质多孔支架与骨髓基质干细胞体外构建组织工程软骨的研究. 中华医学杂志, 2011, 91(17): 1161-1166.
|
9. |
李长青, 周跃. 椎间盘组织工程支架材料研究进展. 中国修复重建外科杂志, 2005, 19(12): 1033-1035.
|
10. |
Calderon L, Collin E, Velasco-Bayon D, et al. Type II collagen-hyaluronan hydrogel—a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater, 2010, 20: 134-48.
|
11. |
Wang B, Borazjani A, Tahai M, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrowmononuclear cells. J Biomed Mater Res A, 2010, 94(4): 1100-1110.
|
12. |
Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissueengineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242.
|
13. |
Zhao Y, Zhang Z, Wang J, et al. Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs, 2012, 36(3): 247-255.
|
14. |
黄惠民, 马良龙, 任宏, 等. 骨髓间质干细胞和脱细胞基质构建组织工程血管的动物实验. 中华医学杂志, 2007, 87(48): 3440-3442.
|
15. |
Du L, Wu X. Development and characterization of a full-thickness acellular porcine cornea matrix for tissueengineering. Artif Organs, 2011, 35(7): 691-705.
|
16. |
Cheng HL, Loai Y, Beaumont M, et al. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonanceimaging study. Magn Reson Med, 2010, 64(2): 341-348.
|
17. |
Xu CC, Chan RW, Weinberger DG, et al. A bovine acellular scaffold for vocal fold reconstruction in a rat model. J Biomed Mater Res A, 2010, 92(1): 18-32.
|
18. |
Zhuang Y, Huang B, Li CQ, et al. Construction of tissue-engineered composite intervertebral disc and preliminary morphological and biochemical evaluation. Biochem Biophys Res Commun, 2011, 407(2): 327-332.
|
19. |
潘勇, 周跃, 郝勇, 等. 脱矿脱细胞骨基质环支架体外构建组织工程化椎间盘纤维环. 中国脊柱脊髓杂志, 2009, 19(6): 451-457.
|
20. |
Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A, 2011, 108(32): 13106-13111.
|