傅玉川 1 , 唐斌 1 , 李平 2
  • 四川大學(xué)華西醫(yī)院(成都,610041)1 放射物理技術(shù)中心;2 頭頸腫瘤科;

【摘要】 蒙特卡羅劑量計(jì)算法一直被公認(rèn)為是最精確的輻射輸運(yùn)計(jì)算工具,因此很早就成為模擬輻射治療粒子輸運(yùn)的重要方法之一。但真正能應(yīng)用于腫瘤放射治療臨床工作的基于蒙特卡羅算法的放射治療計(jì)劃系統(tǒng)的推出卻經(jīng)歷了一個(gè)漫長(zhǎng)的時(shí)間過程,目前仍在進(jìn)一步開發(fā)和優(yōu)化中?,F(xiàn)就通用蒙特卡羅應(yīng)用程序的發(fā)展歷史,介紹基于蒙特卡羅算法的放射治療計(jì)劃系統(tǒng)的研究基礎(chǔ);描述放射治療過程中完整的輻射輸運(yùn)的組成部分;總結(jié)此類系統(tǒng)的優(yōu)勢(shì)、研發(fā)難點(diǎn)和特有的限制條件;介紹能使蒙特卡羅算法應(yīng)用于臨床的主要途徑;并指出仍需要努力研究從而充分發(fā)揮其潛力的領(lǐng)域。

引用本文: 傅玉川,唐斌,李平. 基于蒙特卡羅算法的腫瘤放射治療計(jì)劃系統(tǒng)的研究進(jìn)展. 華西醫(yī)學(xué), 2010, 25(12): 2129-2132. doi: 復(fù)制

1.  Metropolis N. The beginning of the Monte Cavlo Method[J]. Los Alamos Sci, 1987, 15: 125-130.
2.  Bjarngard B, Kase K, Attix F. The dosimetry of ionizing radiation[M]. New York: Academic, 1990, Ⅲ: 427-539.
3.  殷蔚伯, 谷銑之. 腫瘤放射治療學(xué)[M], 北京: 中國(guó)協(xié)和醫(yī)科大學(xué)出版社, 2002: 1-2.
4.  Department of Health. Cancer reform strategy[EB/OL]. London: http: //www. dh. gov. uk/publications. 2007.
5.  Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams[J]. Phys Med Biol, 2003, 48(21): 107-164.
6.  Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning[J]. Med Phys, 2007, 34(12): 4818-4853.
7.  Spezi E, Lewis G. An overview of monte carlo treatment planning for radiotherapy[J]. Radiat Prot Dosimetry, 2008, 131(1): 123-129.
8.  Fasso A, Ferrari A, Ranft J, et al. Fluka: a multi-particle transport code[R]. Stanford University, Stanford: SLAC-R-773, 2005.
9.  Brown FB. MCNP-a general Monte Carlo-particle transport code[R]. Version 5. Los Alamos National Laboratory, Los Alamos: Report LA-UR-03, 2003.
10.  Kawrakow I, Rogers DWO. The EGSnrc code system: Monte Carlo simulation of electron and photon transport[R]. National Research Council of Canada, Ottawa: Technical Report PIRS-701, 2000.
11.  Baro J, Sempau J, Fernandez-Varea JM, et al. PENELOPE-an algorithm for Monte-Carlo simulation of the penetration and energy-loss ofelectrons and positrons in matter[J]. Nucl Instrum Meth Phys Res, 1995, 100(A): 31-46.
12.  Agostinelli S, Allison J, Amako K, et al. GEANT4-a simulation toolkit. Nucl. Instrum[J]. Meth Phys Res, 2003, 506(A): 250-303.
13.  Halbleib JA, Kensek RP, Mehlhorn TA, et al. ITS Version 3. 0: the Integrated TIGER Series of coupled Electron/Photon Monte Carlo Transport Codes Report[R]. Albuquerque, NM, Sandia National Laboratories: SAND91-1634, 1992.
14.  Khan FM. The physics of radiation therapy[M]. Philadelphia: Lippincott Williams Wilkins, 2003: 59-77.
15.  Kawrakow I, Rogers DWO, BRB. Walters Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting[J]. Med Phys, 2004, 31(10): 2883-2898.
16.  Kawrakow I. On the efficiency of photon beam treatment head simulations[J]. Med Phys, 2005, 32(7): 2320-2326.
17.  Rogers DWO, Ma C-M, Walters B, et al. BEAMnrc Users Manual[R]. National Research Council Canada, Ottawa: PIRS-0509, 2002.
18.  顧本廣. 醫(yī)用加速器[M]. 北京: 科學(xué)出版社, 2003: 276-320.
19.  Rogers DW, Faddegon BA, Ding G, et al. BEAM: a Monte Carlo code to simulate radiotherapy treatment[J]. Med Phys, 1995, 22(5): 503-524.
20.  Schach von Wittenau AE, Cox LJ, Bergstrom PM, et al. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space[J]. Med Phys, 1999, 26(7): 1196-1211.
21.  Spezi E. Status of MCTP in Europe[J]. Radiother Oncol, 2007, 84: 6-7.
22.  Papanikolaou N, Battista J, Boyer A, et al. AAPM Report No. 85: Tissue inhomogeneity corrections for megavoltage photon beams[R], Madison, WI: AAPM Report No. 85. 2004.
23.  DeMarco JJ, Solberg TD, Smathers JB. A CT-based Monte Carlo simulation tool for dosimetry planning and analysis[J]. Med Phys, 1998, 25(1): 1-11.
24.  du Plessis FC, Willemse CA, Lotter MG, et al. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients[J]. Med Phys, 1998, 25(7): 1195-1201.
25.  Wang L, Lovelock M, Chui CS. Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms[J]. Med Phys, 1999, 26(12): 2626-2634.
26.  Vanderstraeten B, Chin PW, Fix M, et al. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study[J]. Phys Med Biol, 2007, 52(3): 539-562.
27.  Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm[J]. Med Phys, 1999, 26(8): 1466-1475.
28.  Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning[J]. Phys Med Biol, 2005, 50(5): 937-946.
29.  Bazalova M, Beaulieu L, Palefsky S, et al. Correction of CT artifacts and its influence on Monte Carlo dose calculations[J]. Med Phys, 2007, 34(6): 2119-2132.
30.  Yamamoto T, Mizowaki T, Miyabe Y, et al. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning[J]. Phys Med Biol, 2007, 52(7): 1991-2008.
31.  Alexander A, Deblois F, Stroian G, et al. MMCTP: a radiotherapy research environment for Monte Carlo and patientspecific treatment planning[J]. Phys Med Biol, 2007, 52(13): 297-308.
32.  Fix MK, Manser P, Frei D, et al. An efficient framework for photon Monte Carlo treatment planning[J]. Phys Med Biol, 2007, 52(19): 425-437.
33.  Yaikhom G, Giddy JP, Walker DW, et al. A distributed simulation framework for conformal radiotherapy[A]. IEEE Computer Society: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2008: 2993-3000.
34.  Ma CM, Faddegon BA, Rogers DWO, et al. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy[J]. Med Phys, 1997, 24(3): 401-416.
35.  Yang J, Li JS, Qin L, et al. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation[J]. Phys Med Biol, 2004, 49(12): 2657-2673.
36.  Fippel M, Haryanto F, Dohm O, et al. A virtual photon energy fluence model for Monte Carlo dose calculation[J]. Med Phys, 2003, 30(3): 301-311.
37.  Kawrakow I. VMC++ electron and photon Monte Carlo calculations optimized for radiation treatment planning: advanced Monte Carlo for radiation physics, particle transport simulation and applications[A]. Springer, Berlin: Proceedings of the Monte Carlo 2000 Meeting, 2001: 229-236.
38.  Fotina I, Winkler P, Thomas Künzler, et al. Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams[J]. Radiother Oncol, 2009, 93(3): 645-653.
  1. 1.  Metropolis N. The beginning of the Monte Cavlo Method[J]. Los Alamos Sci, 1987, 15: 125-130.
  2. 2.  Bjarngard B, Kase K, Attix F. The dosimetry of ionizing radiation[M]. New York: Academic, 1990, Ⅲ: 427-539.
  3. 3.  殷蔚伯, 谷銑之. 腫瘤放射治療學(xué)[M], 北京: 中國(guó)協(xié)和醫(yī)科大學(xué)出版社, 2002: 1-2.
  4. 4.  Department of Health. Cancer reform strategy[EB/OL]. London: http: //www. dh. gov. uk/publications. 2007.
  5. 5.  Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams[J]. Phys Med Biol, 2003, 48(21): 107-164.
  6. 6.  Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning[J]. Med Phys, 2007, 34(12): 4818-4853.
  7. 7.  Spezi E, Lewis G. An overview of monte carlo treatment planning for radiotherapy[J]. Radiat Prot Dosimetry, 2008, 131(1): 123-129.
  8. 8.  Fasso A, Ferrari A, Ranft J, et al. Fluka: a multi-particle transport code[R]. Stanford University, Stanford: SLAC-R-773, 2005.
  9. 9.  Brown FB. MCNP-a general Monte Carlo-particle transport code[R]. Version 5. Los Alamos National Laboratory, Los Alamos: Report LA-UR-03, 2003.
  10. 10.  Kawrakow I, Rogers DWO. The EGSnrc code system: Monte Carlo simulation of electron and photon transport[R]. National Research Council of Canada, Ottawa: Technical Report PIRS-701, 2000.
  11. 11.  Baro J, Sempau J, Fernandez-Varea JM, et al. PENELOPE-an algorithm for Monte-Carlo simulation of the penetration and energy-loss ofelectrons and positrons in matter[J]. Nucl Instrum Meth Phys Res, 1995, 100(A): 31-46.
  12. 12.  Agostinelli S, Allison J, Amako K, et al. GEANT4-a simulation toolkit. Nucl. Instrum[J]. Meth Phys Res, 2003, 506(A): 250-303.
  13. 13.  Halbleib JA, Kensek RP, Mehlhorn TA, et al. ITS Version 3. 0: the Integrated TIGER Series of coupled Electron/Photon Monte Carlo Transport Codes Report[R]. Albuquerque, NM, Sandia National Laboratories: SAND91-1634, 1992.
  14. 14.  Khan FM. The physics of radiation therapy[M]. Philadelphia: Lippincott Williams Wilkins, 2003: 59-77.
  15. 15.  Kawrakow I, Rogers DWO, BRB. Walters Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting[J]. Med Phys, 2004, 31(10): 2883-2898.
  16. 16.  Kawrakow I. On the efficiency of photon beam treatment head simulations[J]. Med Phys, 2005, 32(7): 2320-2326.
  17. 17.  Rogers DWO, Ma C-M, Walters B, et al. BEAMnrc Users Manual[R]. National Research Council Canada, Ottawa: PIRS-0509, 2002.
  18. 18.  顧本廣. 醫(yī)用加速器[M]. 北京: 科學(xué)出版社, 2003: 276-320.
  19. 19.  Rogers DW, Faddegon BA, Ding G, et al. BEAM: a Monte Carlo code to simulate radiotherapy treatment[J]. Med Phys, 1995, 22(5): 503-524.
  20. 20.  Schach von Wittenau AE, Cox LJ, Bergstrom PM, et al. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space[J]. Med Phys, 1999, 26(7): 1196-1211.
  21. 21.  Spezi E. Status of MCTP in Europe[J]. Radiother Oncol, 2007, 84: 6-7.
  22. 22.  Papanikolaou N, Battista J, Boyer A, et al. AAPM Report No. 85: Tissue inhomogeneity corrections for megavoltage photon beams[R], Madison, WI: AAPM Report No. 85. 2004.
  23. 23.  DeMarco JJ, Solberg TD, Smathers JB. A CT-based Monte Carlo simulation tool for dosimetry planning and analysis[J]. Med Phys, 1998, 25(1): 1-11.
  24. 24.  du Plessis FC, Willemse CA, Lotter MG, et al. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients[J]. Med Phys, 1998, 25(7): 1195-1201.
  25. 25.  Wang L, Lovelock M, Chui CS. Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms[J]. Med Phys, 1999, 26(12): 2626-2634.
  26. 26.  Vanderstraeten B, Chin PW, Fix M, et al. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study[J]. Phys Med Biol, 2007, 52(3): 539-562.
  27. 27.  Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm[J]. Med Phys, 1999, 26(8): 1466-1475.
  28. 28.  Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning[J]. Phys Med Biol, 2005, 50(5): 937-946.
  29. 29.  Bazalova M, Beaulieu L, Palefsky S, et al. Correction of CT artifacts and its influence on Monte Carlo dose calculations[J]. Med Phys, 2007, 34(6): 2119-2132.
  30. 30.  Yamamoto T, Mizowaki T, Miyabe Y, et al. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning[J]. Phys Med Biol, 2007, 52(7): 1991-2008.
  31. 31.  Alexander A, Deblois F, Stroian G, et al. MMCTP: a radiotherapy research environment for Monte Carlo and patientspecific treatment planning[J]. Phys Med Biol, 2007, 52(13): 297-308.
  32. 32.  Fix MK, Manser P, Frei D, et al. An efficient framework for photon Monte Carlo treatment planning[J]. Phys Med Biol, 2007, 52(19): 425-437.
  33. 33.  Yaikhom G, Giddy JP, Walker DW, et al. A distributed simulation framework for conformal radiotherapy[A]. IEEE Computer Society: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2008: 2993-3000.
  34. 34.  Ma CM, Faddegon BA, Rogers DWO, et al. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy[J]. Med Phys, 1997, 24(3): 401-416.
  35. 35.  Yang J, Li JS, Qin L, et al. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation[J]. Phys Med Biol, 2004, 49(12): 2657-2673.
  36. 36.  Fippel M, Haryanto F, Dohm O, et al. A virtual photon energy fluence model for Monte Carlo dose calculation[J]. Med Phys, 2003, 30(3): 301-311.
  37. 37.  Kawrakow I. VMC++ electron and photon Monte Carlo calculations optimized for radiation treatment planning: advanced Monte Carlo for radiation physics, particle transport simulation and applications[A]. Springer, Berlin: Proceedings of the Monte Carlo 2000 Meeting, 2001: 229-236.
  38. 38.  Fotina I, Winkler P, Thomas Künzler, et al. Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams[J]. Radiother Oncol, 2009, 93(3): 645-653.