• 鐘仁明1,何垠波1,張英杰1,李燕2,王謹2,柏森1;

【摘要】 目的  利用不同匹配區(qū)域對錐形束CT(CBCT)與定位CT(FBCT)分別配準,測量出鼻咽癌放射治療中頸部的變形誤差。 方法  分析2007年4月-2008年12月收治鼻咽癌患者23例,調整治療床前198次CBCT掃描。將鼻咽部掃描CBCT圖像匹配區(qū)域分為上下兩個區(qū)域進行對比分析。其中上匹配區(qū)域為:上界為蝶竇上緣,下界為頸4下緣,側界包括下頜骨外輪廓,前界為上頜竇1/2,后界為平棘突后緣;下匹配區(qū)域為:上界約頸4下緣,下界約胸2-3下緣,側界包括椎體外輪廓,前界包括皮膚,后界平棘突后緣。匹配方式選擇骨,比較匹配結果差異。 結果  選擇上與下匹配區(qū)域結果除Y(頭腳)方向旋轉誤差無統(tǒng)計學差異外,余均有統(tǒng)計學差異(P lt;0.05) 。差值在X(左右)、Z(前后)、Y(頭腳)方向平移分別為(1.14±2.80)、(0.47±1.41)、(0.58±3.88) mm,旋轉誤差X、Y、Z方向分別為(0.90±1.98)、(0.80±2.03)、(0.68±1.90)°。 結論  鼻咽癌放射治療中頸部區(qū)域存在一定變形誤差,通過CBCT引導發(fā)現變形誤差并進行正確糾正是必須的,結合臨床實際及靶區(qū)與危及器官的變化為重新計劃提供依據。
【Abstract】 Objective  To investigate the rotation errors due to neck deformation in nasopharyngeal cancer (NPC) radiotherapy with different match areas to register conebeam CT(CBCT) from image guiding and fanbeam (FBCT) from simulation. Methods  A total of 198 pre-correction CBCT data sets from 23 NPC patients from April 2007 to December 2008 were retrospectively analyzed. The matching areas in CBCT images were divided into up and down region of interest (ROI). For the up ROI, the superior, inferior, left and right, anterior, and posterior boundary were set parallel with sphenoid sinus up side, C4 down side, mandible outside, and 1/2 of maxillary air sinus and acanthi. For the down ROI, the lines were set parallel with C4 down side, T2-3 down side, neck outside, skin surface and acanthi respectively in all directions. All registrations were performed automatically by bony anatomy and the results were compared. Results  The registration results by the up and the down ROI showed significant difference except Y direction for rotation. The translation error was (1.14±2.80),(0.47±1.41),and (0.58±3.88) mm, respectively; and the rotation error was (0.90±1.98),(0.80±2.03),and (0.68±1.90) ° in X, Y, and Z direction, respectively. 〖WTHZ〗Conclusions〖WTBZ〗There are some significant deformation errors at neck areas in NPC radiotherapy. It is important to find out the deformation and correct it with CBCT image guiding. This kind of error information may provide clues for re-planning in addition to clinical practice and the changes of clinical targets and involved organs.

引用本文: 鐘仁明,何垠波,張英杰,李燕,王謹,柏森. 圖像引導下鼻咽癌放射治療中頸部變形旋轉誤差研究. 華西醫(yī)學, 2010, 25(12): 2147-2150. doi: 復制

1.  Wang J, Bai S, Chen NY, et al. Preminary study on the clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy of nasopharyngeal carcinoma[J]. Radiother Oncol, 2009, 90(2): 221-227.
2.  Xu F, Wang J, Bai S, et al. Detection of intrafractionl tumor position error in radiotherapy utilizing cone beam computed tomography[J]. Radiother Oncol, 2008, 89(3): 311-319.
3.  Den RB, Doemer A, Kubicek G, et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2010, 76(5): 1353-1359.
4.  van Kranen S, van Beek S, Rasch C, et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1566-1573.
5.  Zhang L, Garden AS, Lo J, et al. Multiple regions-of-interest analysis of setupuncertainties for head-and-neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006, 64(5): 1559-1569.
6.  Polat B, Wilbert J, Baier K, et al. Nonrigid patient setup errors in the head-and-neck region[J]. Strahlenther Onkol, 2007, 183(9): 506-511.
7.  van Beek S, van Kranen S, Mencarelli A, et al. First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients[J]. Radiother Oncol, 2010, 94: 213-217.
8.  van Kranen S, van Beek S, Mencarelli A, et al. Correction strategies to manage deformations in head-and-neck radiotherapy[J]. Radiother Oncol, 2010, 94(2): 199-205.
9.  van Herk M, Kooy HM. Automatic three dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching [J]. Med Phys, 1994, 21(7): 1163-1178.
10.  Meyer J, Wilbert J, Baier K, et al. Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table[J]. Int J Radiat Oncol Biol Phys, 2007, 67(4): 1220-1228.
11.  Robar JL, Clark BG, Schella JW, et al. Analysis of patient repositioning accuracy in precision radiationtherapy using automated image fusion[J]. Appl Clin Med Phys, 2005, 6(1): 71-83.
12.  Li H, Zhu XR, Zhang L, et al. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients[J]. Int J Radiat Oncol Biol Phys, 2008, 71(3): 916-925.
13.  Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotidglands during head and neck cancer radiotherapy using daily MVCT andautomatic deformable registration[J]. Radiother Oncol, 2008, 89(1): 81-88.
14.  Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changesduring head and neck cancer radiotherapy using daily megavoltage computedtomography and deformable image registration[J]. Int J Radiat Oncol Biol Phys, 2008, 71: 1563-1571.
15.  Kapanen M, Collan J, Saarilahti K, et al. Accuracy requirements for dose response of the major salivary glands[J]. Radiother Oncol, 2009, 93(1): 109-114.
16.  Castadot P, Geets X, Lee JA, et al. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation[J]. Radiother Oncol, 2010, 95(2): 209-217.
17.  Vásquez Osorio EM, Hoogeman MS, Al-Mamgani A, et al. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration[J]. Int J Radiat Oncol Biol Phys, 2008, 70(3): 875-882.
18.  Kam MK, Chau RM, Suen J, et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation[J]. Int J Radiat Oncol Biol Phys, 2003, 56 (1): 145-157.
  1. 1.  Wang J, Bai S, Chen NY, et al. Preminary study on the clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy of nasopharyngeal carcinoma[J]. Radiother Oncol, 2009, 90(2): 221-227.
  2. 2.  Xu F, Wang J, Bai S, et al. Detection of intrafractionl tumor position error in radiotherapy utilizing cone beam computed tomography[J]. Radiother Oncol, 2008, 89(3): 311-319.
  3. 3.  Den RB, Doemer A, Kubicek G, et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2010, 76(5): 1353-1359.
  4. 4.  van Kranen S, van Beek S, Rasch C, et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1566-1573.
  5. 5.  Zhang L, Garden AS, Lo J, et al. Multiple regions-of-interest analysis of setupuncertainties for head-and-neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006, 64(5): 1559-1569.
  6. 6.  Polat B, Wilbert J, Baier K, et al. Nonrigid patient setup errors in the head-and-neck region[J]. Strahlenther Onkol, 2007, 183(9): 506-511.
  7. 7.  van Beek S, van Kranen S, Mencarelli A, et al. First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients[J]. Radiother Oncol, 2010, 94: 213-217.
  8. 8.  van Kranen S, van Beek S, Mencarelli A, et al. Correction strategies to manage deformations in head-and-neck radiotherapy[J]. Radiother Oncol, 2010, 94(2): 199-205.
  9. 9.  van Herk M, Kooy HM. Automatic three dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching [J]. Med Phys, 1994, 21(7): 1163-1178.
  10. 10.  Meyer J, Wilbert J, Baier K, et al. Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table[J]. Int J Radiat Oncol Biol Phys, 2007, 67(4): 1220-1228.
  11. 11.  Robar JL, Clark BG, Schella JW, et al. Analysis of patient repositioning accuracy in precision radiationtherapy using automated image fusion[J]. Appl Clin Med Phys, 2005, 6(1): 71-83.
  12. 12.  Li H, Zhu XR, Zhang L, et al. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients[J]. Int J Radiat Oncol Biol Phys, 2008, 71(3): 916-925.
  13. 13.  Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotidglands during head and neck cancer radiotherapy using daily MVCT andautomatic deformable registration[J]. Radiother Oncol, 2008, 89(1): 81-88.
  14. 14.  Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changesduring head and neck cancer radiotherapy using daily megavoltage computedtomography and deformable image registration[J]. Int J Radiat Oncol Biol Phys, 2008, 71: 1563-1571.
  15. 15.  Kapanen M, Collan J, Saarilahti K, et al. Accuracy requirements for dose response of the major salivary glands[J]. Radiother Oncol, 2009, 93(1): 109-114.
  16. 16.  Castadot P, Geets X, Lee JA, et al. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation[J]. Radiother Oncol, 2010, 95(2): 209-217.
  17. 17.  Vásquez Osorio EM, Hoogeman MS, Al-Mamgani A, et al. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration[J]. Int J Radiat Oncol Biol Phys, 2008, 70(3): 875-882.
  18. 18.  Kam MK, Chau RM, Suen J, et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation[J]. Int J Radiat Oncol Biol Phys, 2003, 56 (1): 145-157.