• 上海交通大學(xué)附屬第三人民醫(yī)院普外一科(上海 201900);

目的  總結(jié)腫瘤起始細胞(tumor initiating Cells,TICs)和上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)及其在腫瘤轉(zhuǎn)移和耐藥中的研究現(xiàn)狀。
方法  檢索近年來國內(nèi)外有關(guān)TICs和EMT及其與腫瘤轉(zhuǎn)移和耐藥關(guān)系的文獻并做綜述。
結(jié)果  TICs是腫瘤細胞中一小群具有自我更新、高度增殖及多向分化能力的細胞,表達多種表面標(biāo)志物,如CD133、CD44等,在腫瘤的侵襲、轉(zhuǎn)移和耐藥中起著重要的作用。EMT是腫瘤上皮細胞失去極性轉(zhuǎn)變?yōu)殚g質(zhì)細胞的一種現(xiàn)象,常見于胚胎發(fā)育及組織修復(fù),能夠促進腫瘤的侵襲、轉(zhuǎn)移以及逃避宿主的免疫反應(yīng),EMT可能是TICs所致腫瘤轉(zhuǎn)移和復(fù)發(fā)的根源。靶向TICs或EMT的治療可能有效預(yù)防腫瘤的復(fù)發(fā)及改善患者的預(yù)后。
結(jié)論  EMT是TICs致腫瘤轉(zhuǎn)移及耐藥的重要機理,對于TICs和EMT的研究可用于探索更有效的針對腫瘤的靶向治療策略。

引用本文: 蔡成,俞繼衛(wèi),姜波健. 腫瘤起始細胞及上皮-間質(zhì)轉(zhuǎn)化在腫瘤轉(zhuǎn)移及耐藥中的作用△. 中國普外基礎(chǔ)與臨床雜志, 2013, 20(1): 99-103. doi: 復(fù)制

1. Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehyd-rogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer[J]. Clin Cancer Res, 2010, 16(1):45-55.
2. Gjerdrum C, Tiron C, Høiby T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival[J]. Proc Natl Acad Sci U S A, 2010, 107(3):1124-1129.
3. Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer[J]. Biochem Biophys Res Commun, 2009, 390(3):1061-1065.
4. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst, 2008, 100(9):672-679.
5. Yang L, Ping YF, Yu X, et al. Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype[J]. Cancer Lett, 2011, 310(1):46-52.
6. Scatena R, Bottoni P, Pontoglio A, et al. Cancer stem cells:the development of new cancer therapeutics[J]. Expert Opin Biol Ther, 2011, 11(7):875-892.
7. Mackenzie IC. Cancer stem cells[J]. Ann Oncol, 2008, 19 Suppl 5:v40-v43.
8. Mackenzie IC. Stem cell properties and epithelial malignancies[J]. Eur J Cancer, 2006, 42(9):1204-1212.
9. Stingl J. Detection and analysis of mammary gland stem cells[J].J Pathol, 2009, 217(2):229-241.
10. Vries RG, Huch M, Clevers H. Stem cells and cancer of the stom-ach and intestine[J]. Mol Oncol, 2010, 4(5):373-384.
11. Jason CM, Shivdasani RA. Gastric epithelial stem cells[J]. Gastroenterology, 2011, 140(2):412-424.
12. Kassem NM. Review article:cancer stem cells:from identification to eradication[J]. J Egypt Natl Canc Inst, 2008, 20(3):209-215.
13. Yu SP, Yang XJ, Zhang B, et al. Enhanced invasion in vitro and the distribution patterns in vivo of CD133+ glioma stem cells[J]. Chin Med J, 2011, 124(17):2599-2604.
14. Catalano V, Di Franco S, Iovino F, et al. CD133 as a target for colon cancer[J]. Expert Opin Ther Targets, 2012, 16(3): 259-267.
15. 陸瑞祺, 吳巨鋼, 周國才, 等. 胃癌CD133陽性細胞的純化及其生物學(xué)特性研究[J]. 中國普外基礎(chǔ)與臨床雜志, 2011, 18(12):1265-1270.
16. Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cellmarkers CD44, CD24 and ALDH1:expression distribution withinintrinsic molecular subtype[J]. J Clin Pathol, 2011, 64(11):937-946.
17. Faber A, Barth C, Hörmann K, et al. CD44 as a stem cell markerin head and neck squamous cell carcinoma[J]. Oncol Rep, 2011, 26(2):321-326.
18. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44[J]. Nat Med, 2011, 17(2):211-215.
19. Williams JL. Cancer stem cells[J]. Clin Lab Sci, 2012, 25(1):50-57.
20. Hotz B, Visekruna A, Buhr HJ, et al. Beyond epithelial to mesenchymal transition:a novel role for the transcription factor Snail in inflammation and wound healing[J]. J Gastrointest Surg, 2010, 14(2):388-397.
21. Weber CE, Li NY, Wai PY, et al. Epithelial-mesenchymal transition, TGF-β, and osteopontin in wound healing and tissue remodeling after injury[J]. J Burn Care Res, 2012, 33(3):311-318.
22. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6):1420-1428.
23. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells[J]. Cancer Res, 2008, 68(7):2391-2399.
24. Kudo-Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells[J]. Cancer Cell, 2009, 15(3):195-206.
25. Ru GQ, Wang HJ, Xu WJ, et al. Upregulation of twist in gastriccarcinoma associated with tumor invasion and poor prognosis[J]. Pathol Oncol Res, 2011, 17(2):341-347.
26. Siemens H, Jackstadt R, Hünten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions[J]. Cell Cycle, 2011, 10(24):4256-4271.
27. Liu YN, Abou-Kheir W, Yin JJ, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition[J]. Mol Cell Biol, 2012, 32(5):941-953.
28. Wu KJ, Yang MH. Epithelial-mesenchymal transition and cancer stemness:the Twist1-Bmi1 connection[J]. Biosci Rep, 2011, 31(6):449-455.
29. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
30. Ryu HS, Park do J, Kim HH, et al. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer[J]. Hum Pathol, 2012, 43(4):520-528.
31. Hwang WL, Yang MH, Tsai ML, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells[J]. Gastroenterology, 2011, 141(1):279-291.
32. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6):582-589.
33. Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state[J]. Proc Natl Acad Sci U S A, 2011, 108(19):7950-7955.
34. Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis[J]. Nat Cell Biol, 2008, 10(3):295-305.
35. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-ledcollective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells[J]. Nat Cell Biol, 2007, 9(12):1392-1400.
36. Giampieri S, Manning C, Hooper S, et al. Localized and reve-rsible TGFbeta signalling switches breast cancer cells from cohe-sive to single cell motility[J]. Nat Cell Biol, 2009, 11(11):1287-1296.
37. Brabletz T, Jung A, Spaderna S, et al. Opinion:migrating cancerstem cells-an integrated concept of malignant tumour progression[J]. Nat Rev Cancer, 2005, 5(9):744-749.
38. Asiedu MK, Ingle JN, Behrens MD, et al. TGFbeta/TNF (alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype[J]. CancerRes, 2011, 71(13):4707-4719.
39. Biddle A, Liang X, Gammon L, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative[J]. Cancer Res, 2011, 71(15):5317-5326.
40. Chaffer CL, Brennan JP, Slavin JL, et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:role of fibroblast growth factor receptor-2[J]. Cancer Res, 2006, 66(23):11271-11278.
41. Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization[J]. Nat Med, 2011, 17(9):1101-1108.
42. Vinogradov S, Wei X. Cancer stem cells and drug resistance:the potential of nanomedicine[J]. Nanomedicine (Lond), 2012, 7(4):597-615.
43. Skvortsova I, Skvortsov S, Raju U, et al. Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse[J]. Radiother Oncol, 2010, 96(1):108-115.
44. Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway[J]. Hepatology, 2010, 52(2):528-539.
45. Cheung ST, Cheung PF, Cheng CK, et al. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC) B5 regulate liver cancer cell chemoresistance[J]. Gastroenterology, 2011, 140(1):344-355.
46. Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+cancer stem cells with metastatic capacity in human colorectal cancer[J]. Cell Stem Cell, 2010, 6(6):603-615.
47. Marsh D, Suchak K, Moutasim KA, et al. Stromal features are predictive of disease mortality in oral cancer patients[J]. J Pathol, 2011, 223(4):470-481.
  1. 1. Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehyd-rogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer[J]. Clin Cancer Res, 2010, 16(1):45-55.
  2. 2. Gjerdrum C, Tiron C, Høiby T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival[J]. Proc Natl Acad Sci U S A, 2010, 107(3):1124-1129.
  3. 3. Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer[J]. Biochem Biophys Res Commun, 2009, 390(3):1061-1065.
  4. 4. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst, 2008, 100(9):672-679.
  5. 5. Yang L, Ping YF, Yu X, et al. Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype[J]. Cancer Lett, 2011, 310(1):46-52.
  6. 6. Scatena R, Bottoni P, Pontoglio A, et al. Cancer stem cells:the development of new cancer therapeutics[J]. Expert Opin Biol Ther, 2011, 11(7):875-892.
  7. 7. Mackenzie IC. Cancer stem cells[J]. Ann Oncol, 2008, 19 Suppl 5:v40-v43.
  8. 8. Mackenzie IC. Stem cell properties and epithelial malignancies[J]. Eur J Cancer, 2006, 42(9):1204-1212.
  9. 9. Stingl J. Detection and analysis of mammary gland stem cells[J].J Pathol, 2009, 217(2):229-241.
  10. 10. Vries RG, Huch M, Clevers H. Stem cells and cancer of the stom-ach and intestine[J]. Mol Oncol, 2010, 4(5):373-384.
  11. 11. Jason CM, Shivdasani RA. Gastric epithelial stem cells[J]. Gastroenterology, 2011, 140(2):412-424.
  12. 12. Kassem NM. Review article:cancer stem cells:from identification to eradication[J]. J Egypt Natl Canc Inst, 2008, 20(3):209-215.
  13. 13. Yu SP, Yang XJ, Zhang B, et al. Enhanced invasion in vitro and the distribution patterns in vivo of CD133+ glioma stem cells[J]. Chin Med J, 2011, 124(17):2599-2604.
  14. 14. Catalano V, Di Franco S, Iovino F, et al. CD133 as a target for colon cancer[J]. Expert Opin Ther Targets, 2012, 16(3): 259-267.
  15. 15. 陸瑞祺, 吳巨鋼, 周國才, 等. 胃癌CD133陽性細胞的純化及其生物學(xué)特性研究[J]. 中國普外基礎(chǔ)與臨床雜志, 2011, 18(12):1265-1270.
  16. 16. Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cellmarkers CD44, CD24 and ALDH1:expression distribution withinintrinsic molecular subtype[J]. J Clin Pathol, 2011, 64(11):937-946.
  17. 17. Faber A, Barth C, Hörmann K, et al. CD44 as a stem cell markerin head and neck squamous cell carcinoma[J]. Oncol Rep, 2011, 26(2):321-326.
  18. 18. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44[J]. Nat Med, 2011, 17(2):211-215.
  19. 19. Williams JL. Cancer stem cells[J]. Clin Lab Sci, 2012, 25(1):50-57.
  20. 20. Hotz B, Visekruna A, Buhr HJ, et al. Beyond epithelial to mesenchymal transition:a novel role for the transcription factor Snail in inflammation and wound healing[J]. J Gastrointest Surg, 2010, 14(2):388-397.
  21. 21. Weber CE, Li NY, Wai PY, et al. Epithelial-mesenchymal transition, TGF-β, and osteopontin in wound healing and tissue remodeling after injury[J]. J Burn Care Res, 2012, 33(3):311-318.
  22. 22. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6):1420-1428.
  23. 23. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells[J]. Cancer Res, 2008, 68(7):2391-2399.
  24. 24. Kudo-Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells[J]. Cancer Cell, 2009, 15(3):195-206.
  25. 25. Ru GQ, Wang HJ, Xu WJ, et al. Upregulation of twist in gastriccarcinoma associated with tumor invasion and poor prognosis[J]. Pathol Oncol Res, 2011, 17(2):341-347.
  26. 26. Siemens H, Jackstadt R, Hünten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions[J]. Cell Cycle, 2011, 10(24):4256-4271.
  27. 27. Liu YN, Abou-Kheir W, Yin JJ, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition[J]. Mol Cell Biol, 2012, 32(5):941-953.
  28. 28. Wu KJ, Yang MH. Epithelial-mesenchymal transition and cancer stemness:the Twist1-Bmi1 connection[J]. Biosci Rep, 2011, 31(6):449-455.
  29. 29. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
  30. 30. Ryu HS, Park do J, Kim HH, et al. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer[J]. Hum Pathol, 2012, 43(4):520-528.
  31. 31. Hwang WL, Yang MH, Tsai ML, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells[J]. Gastroenterology, 2011, 141(1):279-291.
  32. 32. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6):582-589.
  33. 33. Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state[J]. Proc Natl Acad Sci U S A, 2011, 108(19):7950-7955.
  34. 34. Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis[J]. Nat Cell Biol, 2008, 10(3):295-305.
  35. 35. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-ledcollective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells[J]. Nat Cell Biol, 2007, 9(12):1392-1400.
  36. 36. Giampieri S, Manning C, Hooper S, et al. Localized and reve-rsible TGFbeta signalling switches breast cancer cells from cohe-sive to single cell motility[J]. Nat Cell Biol, 2009, 11(11):1287-1296.
  37. 37. Brabletz T, Jung A, Spaderna S, et al. Opinion:migrating cancerstem cells-an integrated concept of malignant tumour progression[J]. Nat Rev Cancer, 2005, 5(9):744-749.
  38. 38. Asiedu MK, Ingle JN, Behrens MD, et al. TGFbeta/TNF (alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype[J]. CancerRes, 2011, 71(13):4707-4719.
  39. 39. Biddle A, Liang X, Gammon L, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative[J]. Cancer Res, 2011, 71(15):5317-5326.
  40. 40. Chaffer CL, Brennan JP, Slavin JL, et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:role of fibroblast growth factor receptor-2[J]. Cancer Res, 2006, 66(23):11271-11278.
  41. 41. Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization[J]. Nat Med, 2011, 17(9):1101-1108.
  42. 42. Vinogradov S, Wei X. Cancer stem cells and drug resistance:the potential of nanomedicine[J]. Nanomedicine (Lond), 2012, 7(4):597-615.
  43. 43. Skvortsova I, Skvortsov S, Raju U, et al. Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse[J]. Radiother Oncol, 2010, 96(1):108-115.
  44. 44. Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway[J]. Hepatology, 2010, 52(2):528-539.
  45. 45. Cheung ST, Cheung PF, Cheng CK, et al. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC) B5 regulate liver cancer cell chemoresistance[J]. Gastroenterology, 2011, 140(1):344-355.
  46. 46. Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+cancer stem cells with metastatic capacity in human colorectal cancer[J]. Cell Stem Cell, 2010, 6(6):603-615.
  47. 47. Marsh D, Suchak K, Moutasim KA, et al. Stromal features are predictive of disease mortality in oral cancer patients[J]. J Pathol, 2011, 223(4):470-481.