• 上海交通大學(xué)醫(yī)學(xué)院附屬第三人民醫(yī)院普外一科(上海 201999);

目的  總結(jié)雷帕霉素靶蛋白(mTOR)及其信號通路在胃癌化療耐藥中的研究現(xiàn)狀。
方法  查閱國內(nèi)外近年來有關(guān)mTOR信號通路在胃癌化療耐藥中作用機理的文獻并做綜述。
結(jié)果  mTOR作為mTOR信號轉(zhuǎn)導(dǎo)通路中一個重要的信號分子,參與了細(xì)胞的生長、增殖以及代謝,血管新生等重要過程。mTOR信號通路相關(guān)分子在胃癌中過表達(dá),在胃癌的化療耐藥中起重要作用。此外,腫瘤干細(xì)胞也參與了胃癌的化療耐藥。
結(jié)論  mTOR及其信號通路在胃癌的化療耐藥中起重要作用。以mTOR為靶點,聯(lián)合應(yīng)用mTOR抑制劑和化療藥物治療胃癌,對克服胃癌化療耐藥已初見成效,具有廣闊的臨床應(yīng)用前景。

引用本文: 朱優(yōu)龍,姜波健,俞繼衛(wèi). mTOR及其信號通路在胃癌化療耐藥中的研究進展△. 中國普外基礎(chǔ)與臨床雜志, 2012, 19(12): 1352-1356. doi: 復(fù)制

1. Lin Y, Ueda J, Kikuchi S, et al. Comparative epidemiology of gastric cancer between Japan and China[J]. World J Gastroenterol, 2011, 17(39):4421-4428.
2. Menges M, Hoehler T. Current strategies in systemic treatment of gastric cancer and cancer of the gastroesophageal junction[J].J Cancer Res Clin Oncol, 2009, 135(1):29-38.
3. Al-Batran SE, Ducreux M, Ohtsu A. mTOR as a therapeutic target in patients with gastric cancer[J]. Int J Cancer, 2012, 130(3):491-496.
4. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology:how pathway complexity informs therapeutic strategy[J]. J Clin Invest, 2011, 121(4):1231-1241.
5. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway[J]. Curr Opin Cell Biol, 2005, 17(6):596-603.
6. Yu G, Wang J, Chen Y, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer[J]. Clin Cancer Res, 2009, 15(5):1821-1829.
7. Kamata S, Kishimoto T, Kobayashi S, et al. Possible involvement of persistent activity of the mammalian target of rapamycin pathway in the cisplatin resistance of AFP-producing gastric cancercells[J]. Cancer Biol Ther, 2007, 6(7):1036-1043.
8. Lee KH, Hur HS, Im SA, et al. RAD001 shows activity against gastric cancer cells and overcomes 5-FU resistance by downregula-ting thymidylate synthase[J]. Cancer Lett, 2010, 299(1):22-28.
9. Semenza GL. HIF-1:upstream and downstream of cancer metab-olism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56.
10. Nakamura J, Kitajima Y, Kai K, et al. Hypoxia-inducible factor-1alpha expression predicts the response to 5-fluorouracil-basedadjuvant chemotherapy in advanced gastric cancer[J]. Oncol Rep, 2009, 22(4):693-699.
11. Nakamura J, Kitajima Y, Kai K, et al. HIF-1alpha is an unfavor-able determinant of relapse in gastric cancer patients who underwent curative surgery followed by adjuvant 5-FU chemotherapy[J]. Int J Cancer, 2010, 127(5):1158-1171.
12. Rohwer N, Dame C, Haugstetter A, et al. Hypoxia-inducible factor 1α determines gastric cancer chemosensitivity via modulation of p53 and NF-κB[J]. PLoS One, 2010, 5(8):e12038.
13. Kim HK, Choi IJ, Kim CG, et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients[J]. PLoS One, 2011, 6(2):e16694.
14. 姜海廣, 陸瑞祺, 吳巨鋼, 等. 基質(zhì)細(xì)胞源性因子-1α/CXC趨化因子受體-4軸經(jīng)PI3K/Akt通路對胃癌細(xì)胞CD133表達(dá)的調(diào)控作用[J]. 中華實驗外科雜志, 2012, 29(3):378-380.
15. Anderson EC, Hessman C, Levin TG, et al. The role of colorectal cancer stem cells in metastatic disease and therapeutic response[J]. Cancer, 2011, 3(1):319-339.
16. Dirks P. Cancer stem cells:invitation to a second round[J].Nature, 2010, 466(7302):40-41.
17. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept[J]. J Clin Invest, 2010, 120(1):41-50.
18. Shafee N, Smith CR, Wei Shuanzeng, et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors[J]. Cancer Res, 2008, 68(9):3243-3250.
19. To K, Fotovati A, Reipas KM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance[J]. Cancer Res, 2010, 70(7):2840-2851.
20. Cammareri P, Scopelliti A, Todaro M, et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells[J]. Cancer Res, 2010, 70(11):4655-4665.
21. Zhang L, Jiao M, Li L, et al. Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties[J]. J Cancer Res Clin Oncol, 2012, 138(4):675-686.
22. Jimeno A, Rudek MA, Kulesza P, et al. Pharmacodynamic-guided modified continuous reassessment method-based, dose-finding study of rapamycin in adult patients with solid tumors[J]. J Clin Oncol, 2008, 26(25):4172-4179.
23. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signaling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells[J]. Eur J Cancer, 2008, 44(7):1022-1029.
24. Cejka D, Preusser M, Fuereder T, et al. mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo[J]. Anticancer Res, 2008, 28(6A):3801-3808.
25. Cejka D, Preusser M, Woehrer A, et al. Everolimus (RAD001) and anti-angiogenic cyclophosphamide show long-term control of gastric cancer growth in vivo[J]. Cancer Biol Ther, 2008, 7(9):1377-1385.
26. Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2[J]. PLoS Biol, 2009, 7(2):e1000038.
27. Choo AY, Yoon SO, Kim SG, et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation[J]. Proc Natl Acad Sci U S A, 2008, 105(45):17414-17419.
28. Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1[J]. J Biol Chem, 2009, 284(12):8023-8032.
29. O’reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt[J]. Cancer Res, 2006, 66(3):1500-1508.
30. Breuleux M, Klopfenstein M, Stephan C, et al. Increased Akt S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition[J]. Mol Cancer Ther, 2009, 8(4):742-753.
31. García-Martínez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)[J]. Biochem J, 2009, 421(1):29-42.
32. Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity[J]. Cancer Res, 2010, 70(1):288-298.
33. Yu K, Shi C, Toral-Barza L, et al. Beyond rapalog therapy:preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2[J]. Cancer Res, 2010, 70(2):621-631.
34. Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2:distinct from rapamycin[J]. Mol Cancer Ther, 2011, 10(8):1394-1406.
35. Füreder T, Wanek T, Pflegerl P, et al. BEZ235 impairs gastriccancer growth by inhibition of PI3K/mTOR in vitro and in vivo[J]. BMC Pharmacol, 2010, 10(Suppl 1):A41.
  1. 1. Lin Y, Ueda J, Kikuchi S, et al. Comparative epidemiology of gastric cancer between Japan and China[J]. World J Gastroenterol, 2011, 17(39):4421-4428.
  2. 2. Menges M, Hoehler T. Current strategies in systemic treatment of gastric cancer and cancer of the gastroesophageal junction[J].J Cancer Res Clin Oncol, 2009, 135(1):29-38.
  3. 3. Al-Batran SE, Ducreux M, Ohtsu A. mTOR as a therapeutic target in patients with gastric cancer[J]. Int J Cancer, 2012, 130(3):491-496.
  4. 4. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology:how pathway complexity informs therapeutic strategy[J]. J Clin Invest, 2011, 121(4):1231-1241.
  5. 5. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway[J]. Curr Opin Cell Biol, 2005, 17(6):596-603.
  6. 6. Yu G, Wang J, Chen Y, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer[J]. Clin Cancer Res, 2009, 15(5):1821-1829.
  7. 7. Kamata S, Kishimoto T, Kobayashi S, et al. Possible involvement of persistent activity of the mammalian target of rapamycin pathway in the cisplatin resistance of AFP-producing gastric cancercells[J]. Cancer Biol Ther, 2007, 6(7):1036-1043.
  8. 8. Lee KH, Hur HS, Im SA, et al. RAD001 shows activity against gastric cancer cells and overcomes 5-FU resistance by downregula-ting thymidylate synthase[J]. Cancer Lett, 2010, 299(1):22-28.
  9. 9. Semenza GL. HIF-1:upstream and downstream of cancer metab-olism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56.
  10. 10. Nakamura J, Kitajima Y, Kai K, et al. Hypoxia-inducible factor-1alpha expression predicts the response to 5-fluorouracil-basedadjuvant chemotherapy in advanced gastric cancer[J]. Oncol Rep, 2009, 22(4):693-699.
  11. 11. Nakamura J, Kitajima Y, Kai K, et al. HIF-1alpha is an unfavor-able determinant of relapse in gastric cancer patients who underwent curative surgery followed by adjuvant 5-FU chemotherapy[J]. Int J Cancer, 2010, 127(5):1158-1171.
  12. 12. Rohwer N, Dame C, Haugstetter A, et al. Hypoxia-inducible factor 1α determines gastric cancer chemosensitivity via modulation of p53 and NF-κB[J]. PLoS One, 2010, 5(8):e12038.
  13. 13. Kim HK, Choi IJ, Kim CG, et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients[J]. PLoS One, 2011, 6(2):e16694.
  14. 14. 姜海廣, 陸瑞祺, 吳巨鋼, 等. 基質(zhì)細(xì)胞源性因子-1α/CXC趨化因子受體-4軸經(jīng)PI3K/Akt通路對胃癌細(xì)胞CD133表達(dá)的調(diào)控作用[J]. 中華實驗外科雜志, 2012, 29(3):378-380.
  15. 15. Anderson EC, Hessman C, Levin TG, et al. The role of colorectal cancer stem cells in metastatic disease and therapeutic response[J]. Cancer, 2011, 3(1):319-339.
  16. 16. Dirks P. Cancer stem cells:invitation to a second round[J].Nature, 2010, 466(7302):40-41.
  17. 17. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept[J]. J Clin Invest, 2010, 120(1):41-50.
  18. 18. Shafee N, Smith CR, Wei Shuanzeng, et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors[J]. Cancer Res, 2008, 68(9):3243-3250.
  19. 19. To K, Fotovati A, Reipas KM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance[J]. Cancer Res, 2010, 70(7):2840-2851.
  20. 20. Cammareri P, Scopelliti A, Todaro M, et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells[J]. Cancer Res, 2010, 70(11):4655-4665.
  21. 21. Zhang L, Jiao M, Li L, et al. Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties[J]. J Cancer Res Clin Oncol, 2012, 138(4):675-686.
  22. 22. Jimeno A, Rudek MA, Kulesza P, et al. Pharmacodynamic-guided modified continuous reassessment method-based, dose-finding study of rapamycin in adult patients with solid tumors[J]. J Clin Oncol, 2008, 26(25):4172-4179.
  23. 23. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signaling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells[J]. Eur J Cancer, 2008, 44(7):1022-1029.
  24. 24. Cejka D, Preusser M, Fuereder T, et al. mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo[J]. Anticancer Res, 2008, 28(6A):3801-3808.
  25. 25. Cejka D, Preusser M, Woehrer A, et al. Everolimus (RAD001) and anti-angiogenic cyclophosphamide show long-term control of gastric cancer growth in vivo[J]. Cancer Biol Ther, 2008, 7(9):1377-1385.
  26. 26. Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2[J]. PLoS Biol, 2009, 7(2):e1000038.
  27. 27. Choo AY, Yoon SO, Kim SG, et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation[J]. Proc Natl Acad Sci U S A, 2008, 105(45):17414-17419.
  28. 28. Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1[J]. J Biol Chem, 2009, 284(12):8023-8032.
  29. 29. O’reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt[J]. Cancer Res, 2006, 66(3):1500-1508.
  30. 30. Breuleux M, Klopfenstein M, Stephan C, et al. Increased Akt S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition[J]. Mol Cancer Ther, 2009, 8(4):742-753.
  31. 31. García-Martínez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)[J]. Biochem J, 2009, 421(1):29-42.
  32. 32. Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity[J]. Cancer Res, 2010, 70(1):288-298.
  33. 33. Yu K, Shi C, Toral-Barza L, et al. Beyond rapalog therapy:preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2[J]. Cancer Res, 2010, 70(2):621-631.
  34. 34. Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2:distinct from rapamycin[J]. Mol Cancer Ther, 2011, 10(8):1394-1406.
  35. 35. Füreder T, Wanek T, Pflegerl P, et al. BEZ235 impairs gastriccancer growth by inhibition of PI3K/mTOR in vitro and in vivo[J]. BMC Pharmacol, 2010, 10(Suppl 1):A41.