• 中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院?國(guó)家心血管病中心 阜外心血管病醫(yī)院心血管疾病國(guó)家重點(diǎn)實(shí)驗(yàn)室 體外循環(huán)科, 北京 100037;

目的 通過(guò)離體缺血-再灌注心臟模型,觀察缺血預(yù)處理(IPC)、缺血后處理(IPO)和肢體遠(yuǎn)端預(yù)處理(RIPC)后心臟microRNA1 (miRNA-1)和microRNA21 (miRNA-21)的表達(dá)變化,以及它們所調(diào)控靶蛋白熱休克蛋白70 (HSP70)和程序性細(xì)胞死亡4 (PDCD4)表達(dá)變化,期望從miRNA調(diào)控水平揭示心臟的內(nèi)源性保護(hù)機(jī)制?!》椒ā∪prague-Dawley (SD)大鼠心臟,建立離體Langendorff心肌缺血-再灌注模型,隨機(jī)分為4組(每組12只),對(duì)照組、IPC組、IPO組和RIPC組。檢測(cè)各組血流動(dòng)力學(xué)指標(biāo),蛋白印跡法(Western blotting)檢測(cè)PDCD4、HSP70、B細(xì)胞淋巴瘤/白血病-2 (Bcl-2) 和Bcl-2相關(guān)X蛋白(Bax)含量,taqman探針法檢測(cè)miRNA-1和miRNA-21含量,末端脫氧核苷酸轉(zhuǎn)移酶介導(dǎo)的原位缺口標(biāo)記法(TUNEL) 檢測(cè)心肌細(xì)胞凋亡,2,3,5-氯化三苯基四氮唑(TTC) 法檢測(cè)心肌梗死面積。 結(jié)果 IPC組心肌的 miRNA-1和miRNA-21表達(dá)明顯高于對(duì)照組,但RIPC組和IPO組心肌的miRNA-1表達(dá)較對(duì)照組明顯降低 (P<0.05)。IPC組、RIPC組和IPO組心肌中HSP70、PDCD4和Bax蛋白含量較對(duì)照組明顯減少(P<0.05),Bcl-2蛋白含量各組間差異無(wú)統(tǒng)計(jì)學(xué)意義。IPC組、RIPC組和IPO組左室心肌梗死面積/左室總面積以及心肌細(xì)胞凋亡率明顯低于對(duì)照組(P<0.05)?!〗Y(jié)論 miRNA-1和miRNA-21在缺血預(yù)處理、缺血后處理和遠(yuǎn)端預(yù)處理后,表達(dá)變化是不同的,同時(shí)各處理組中miRNA與其靶蛋白并不都是負(fù)性調(diào)節(jié)關(guān)系。

引用本文: 段欣,王小華,吉冰洋,劉晉萍,龍村. MicroRNA-1和microRNA-21在缺血預(yù)處理、后處理及遠(yuǎn)端預(yù)處理中的表達(dá)變化. 中國(guó)胸心血管外科臨床雜志, 2012, 19(4): 402-406. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Cardiovasc Res, 2001,51 (4):637-646.
2.  Hausenloy DJ, Yellon DM. The evolving story of “conditioning” to protect against acute myocardial ischaemia-reperfusion injury. Heart, 2007, 93 (6):649-651.
3.  Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74 (5):1124-1136.
4.  Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003, 285 (2):H579-588.
5.  Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ′preconditioning′ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87 (3):893-899.
6.  Gho BC, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94 (9):2193-2200.
7.  Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium:role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol, 1998, 275 (5 Pt 2):H1542-1547.
8.  Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo.Circulation, 2002,106 (23):2881-2883.
9.  Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23 (1):175-205.
10.  Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet, 2007, 8:215-239.
11.  Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res, 2009,104 (5):572-575.
12.  Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res,87 (3):431-439.
13.  Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med, 2005,15 (2):69-75.
14.  Wang Y, Xu H, Mizoguchi K, et al. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res, 2001,49 (2):391-398.
15.  Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning II: the role of nitric oxide. Microsurgery, 2002,22 (6):227-231.
16.  Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007,120 (Pt 17):3045-3052.
17.  Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 2005,102 (52):18986-18991.
18.  Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38 (2):228-233.
19.  Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation, 2008,118 (19):1915-1919.
20.  Latchman DS. Heat shock proteins and cardiac protection.
21.  Hampton CR, Shimamoto A, Rothnie CL, et al. HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol, 2003,285 (2):H866-874.
22.  Wang G, Liem DA, Vondriska TM, et al. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol, 2005,288 (3):H1290-1295.
23.  Precht TA, Phelps RA, Linseman DA, et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ, 2005,12 (3):255-265.
24.  Schmitt JP, Schroder J, Schunkert H, et al. Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg, 2002,73 (4):1229-1235.
25.  Penna C, Tullio F, Merlino A, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol, 2009,104 (4):390-402.
  1. 1. Cardiovasc Res, 2001,51 (4):637-646.
  2. 2.  Hausenloy DJ, Yellon DM. The evolving story of “conditioning” to protect against acute myocardial ischaemia-reperfusion injury. Heart, 2007, 93 (6):649-651.
  3. 3.  Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74 (5):1124-1136.
  4. 4.  Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003, 285 (2):H579-588.
  5. 5.  Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ′preconditioning′ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87 (3):893-899.
  6. 6.  Gho BC, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94 (9):2193-2200.
  7. 7.  Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium:role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol, 1998, 275 (5 Pt 2):H1542-1547.
  8. 8.  Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo.Circulation, 2002,106 (23):2881-2883.
  9. 9.  Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23 (1):175-205.
  10. 10.  Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet, 2007, 8:215-239.
  11. 11.  Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res, 2009,104 (5):572-575.
  12. 12.  Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res,87 (3):431-439.
  13. 13.  Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med, 2005,15 (2):69-75.
  14. 14.  Wang Y, Xu H, Mizoguchi K, et al. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res, 2001,49 (2):391-398.
  15. 15.  Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning II: the role of nitric oxide. Microsurgery, 2002,22 (6):227-231.
  16. 16.  Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007,120 (Pt 17):3045-3052.
  17. 17.  Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 2005,102 (52):18986-18991.
  18. 18.  Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38 (2):228-233.
  19. 19.  Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation, 2008,118 (19):1915-1919.
  20. 20.  Latchman DS. Heat shock proteins and cardiac protection.
  21. 21.  Hampton CR, Shimamoto A, Rothnie CL, et al. HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol, 2003,285 (2):H866-874.
  22. 22.  Wang G, Liem DA, Vondriska TM, et al. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol, 2005,288 (3):H1290-1295.
  23. 23.  Precht TA, Phelps RA, Linseman DA, et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ, 2005,12 (3):255-265.
  24. 24.  Schmitt JP, Schroder J, Schunkert H, et al. Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg, 2002,73 (4):1229-1235.
  25. 25.  Penna C, Tullio F, Merlino A, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol, 2009,104 (4):390-402.