• 南方醫(yī)科大學(xué)解剖學(xué)教研室 廣東省組織構(gòu)建與檢測重點(diǎn)實(shí)驗(yàn)室(廣州,510515);

目的 探討周期性力學(xué)刺激對體外培養(yǎng)的成肌細(xì)胞自身抗原表達(dá)的影響。 方法 取C2C12細(xì)胞根據(jù)處理方法不同分為實(shí)驗(yàn)組及對照組,其中實(shí)驗(yàn)組分為4個(gè)亞組,即2、4、6 d周期性拉伸組(2、4、6 d拉伸組)及1 d拉伸組。2、4、6 d拉伸組:細(xì)胞置于Flexercell 5000柔性基底加載系統(tǒng),以0.25 Hz拉伸頻率、10%拉伸幅度進(jìn)行每天2 h應(yīng)力加載,連續(xù)加載2、4、6 d;1 d拉伸組:細(xì)胞置于Flexercell 5000柔性基底加載系統(tǒng),以1 Hz拉伸頻率、15%拉伸幅度拉伸1 h,23 h后收集細(xì)胞;對照組:細(xì)胞常規(guī)培養(yǎng)1、2、4、6 d。培養(yǎng)期間于倒置相差顯微鏡下觀察細(xì)胞生長情況。采用流式細(xì)胞儀檢測細(xì)胞增殖情況,Western blot檢測自身抗原DNA依賴蛋白激酶催化亞基(Ku/the catalytic subunit of DNA-dependent protein kinase,DNA-PKcs)、Mi-2(reconfigurable components deacetylase complexes of NuRD)、U1-70(A part of ATP-dependent DNA helicaseⅡ)、組氨酰-tRNA合成酶(histidyl tRNA synthetase,HRS)表達(dá)情況。 結(jié)果 經(jīng)培養(yǎng)后,1 d拉伸組可見脫落細(xì)胞,對照組1 d時(shí)無細(xì)胞脫落;2 d拉伸組細(xì)胞增殖較對照組2 d時(shí)明顯;4 d拉伸組細(xì)胞出現(xiàn)分化,6 d拉伸組細(xì)胞部分融合,與對照組4、6 d時(shí)情況一致。1 d拉伸組細(xì)胞經(jīng)單次拉伸后出現(xiàn)凋亡,相對DNA增殖指數(shù)(relative DNA proliferation index,DPI)與對照組1 d時(shí)比較,差異無統(tǒng)計(jì)學(xué)意義(t=0.346,P=0.747)。經(jīng)周期性拉伸后,2、4 d拉伸組DPI較對照組2、4 d時(shí)顯著提高(P  lt; 0.05),6 d拉伸組與對照組6 d時(shí)比較差異無統(tǒng)計(jì)學(xué)意義(t=1.191,P=0.303)。2 d拉伸組DNA-PKcs、Mi-2、HRS和U1-70蛋白相對表達(dá)量均較對照組2 d時(shí)明顯降低(P  lt; 0.05); 4 d拉伸組與對照組4 d時(shí)比較差異均無統(tǒng)計(jì)學(xué)意義(P  gt; 0.05)。4 d拉伸組各抗原蛋白相對表達(dá)量均較2 d拉伸組顯著增加(P  lt; 0.05),而對照組4 d 時(shí)均較2 d時(shí)顯著降低(P  lt; 0.05)。 結(jié)論 短期力學(xué)刺激可以抑制成肌細(xì)胞自身抗原表達(dá),但隨時(shí)間延長,細(xì)胞分化融合以及對力學(xué)刺激的適應(yīng)使其對自身抗原表達(dá)抑制作用減弱。

引用本文: 陳榮,劉幸卉,黃維一,曾慧君,史丹丹,曹標(biāo),廖華. 周期性力學(xué)刺激對成肌細(xì)胞自身抗原表達(dá)的影響. 中國修復(fù)重建外科雜志, 2013, 27(9): 1128-1133. doi: 復(fù)制

1. Mammen AL. Dermatomyositis and polymyositis: clinical presentation, autoantibodies, and pathogenesis. Ann N Y Acad Sci, 2010, 1184: 134-153.
2. Dimachkie MM. Idiopathic inflammatory myopathies. J Neuroimmunol, 2011, 231(1-2): 32-42.
3. Wiesinger GF, Quittan M, Graninger M, et al. Benefit of 6 months long-term physical training in polymyositis/dermatomyositis patients. Br J Rheumatol, 1998, 37(12): 1338-1342.
4. Spector SA, Lemmer JT, Koffman BM, et al. Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve, 1997, 20(10): 1242-1248.
5. Habers GE, Takken T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy—a systematic review. Rheumatology (Oxford), 2011, 50(11): 2113-2124.
6. Alexanderson H, Lundberg IE. Exercise as a therapeutic modality in patients with idiopathic inflammatory myopathies. Curr Opin Rheumatol, 2012, 24(2): 201-207.
7. Tatsumi R. Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J, 2010, 81(1): 11-20.
8. Tatsumi R, Wuollet AL, Tabata K, et al. A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol, 2009, 296(4): C922-C929.
9. Tatsumi R, Allen RE. Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve, 2004, 30(5): 654-658.
10. Hasselgren PO, Alamdari N, Aversa Z, et al. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care, 2010, 13(4): 423-428.
11. Abe S, Rhee S, Iwanuma O, et al. Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat Histol Embryol, 2009, 38(4): 305-310.
12. 邱小忠, 李小娜, 陳維毅, 等. 周期性機(jī)械拉伸對C2C12成肌細(xì)胞增殖的影響. 中國臨床解剖學(xué)雜志, 2006, 24(2): 183-185.
13. Tan J, Kuang W, Jin Z, et al. Inhibition of NFkappaB by activated c-Jun NH2 terminal kinase 1 acts as a switch for C2C12 cell death under excessive stretch. Apoptosis, 2009, 14(6): 764-770.
14. Soltow QA, Lira VA, Betters JL, et al. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil, 2010, 31(3): 215-225.
15. Kook SH, Lee HJ, Chung WT, et al. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells, 2008, 25(4): 479-486.
16. Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med, 2005, 201(4): 591-601.
17. Mammen AL, Casciola-Rosen LA, Hall JC, et al. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle. Arthritis Rheum, 2009, 60(12): 3784-3793.
18. Chakkalakal JV, Michel SA, Chin ER, et al. Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet, 2006, 15(9): 1423-1435.
19. Wehling M, Spencer MJ, Tidball JG. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol, 2001, 155(1): 123-131.
20. Mizunoya W, Upadhaya R, Burczynski FJ, et al. Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol, 2011, 300(5): C1065-C1077.
21. Sugiura T, Kawaguchi Y, Soejima M, et al. Increased HGF and c-Met in muscle tissues of polymyositis and dermatomyositis patients: beneficial roles of HGF in muscle regeneration. Clin Immunol, 2010, 136(3): 387-399.
  1. 1. Mammen AL. Dermatomyositis and polymyositis: clinical presentation, autoantibodies, and pathogenesis. Ann N Y Acad Sci, 2010, 1184: 134-153.
  2. 2. Dimachkie MM. Idiopathic inflammatory myopathies. J Neuroimmunol, 2011, 231(1-2): 32-42.
  3. 3. Wiesinger GF, Quittan M, Graninger M, et al. Benefit of 6 months long-term physical training in polymyositis/dermatomyositis patients. Br J Rheumatol, 1998, 37(12): 1338-1342.
  4. 4. Spector SA, Lemmer JT, Koffman BM, et al. Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve, 1997, 20(10): 1242-1248.
  5. 5. Habers GE, Takken T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy—a systematic review. Rheumatology (Oxford), 2011, 50(11): 2113-2124.
  6. 6. Alexanderson H, Lundberg IE. Exercise as a therapeutic modality in patients with idiopathic inflammatory myopathies. Curr Opin Rheumatol, 2012, 24(2): 201-207.
  7. 7. Tatsumi R. Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J, 2010, 81(1): 11-20.
  8. 8. Tatsumi R, Wuollet AL, Tabata K, et al. A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol, 2009, 296(4): C922-C929.
  9. 9. Tatsumi R, Allen RE. Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve, 2004, 30(5): 654-658.
  10. 10. Hasselgren PO, Alamdari N, Aversa Z, et al. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care, 2010, 13(4): 423-428.
  11. 11. Abe S, Rhee S, Iwanuma O, et al. Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat Histol Embryol, 2009, 38(4): 305-310.
  12. 12. 邱小忠, 李小娜, 陳維毅, 等. 周期性機(jī)械拉伸對C2C12成肌細(xì)胞增殖的影響. 中國臨床解剖學(xué)雜志, 2006, 24(2): 183-185.
  13. 13. Tan J, Kuang W, Jin Z, et al. Inhibition of NFkappaB by activated c-Jun NH2 terminal kinase 1 acts as a switch for C2C12 cell death under excessive stretch. Apoptosis, 2009, 14(6): 764-770.
  14. 14. Soltow QA, Lira VA, Betters JL, et al. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil, 2010, 31(3): 215-225.
  15. 15. Kook SH, Lee HJ, Chung WT, et al. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells, 2008, 25(4): 479-486.
  16. 16. Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med, 2005, 201(4): 591-601.
  17. 17. Mammen AL, Casciola-Rosen LA, Hall JC, et al. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle. Arthritis Rheum, 2009, 60(12): 3784-3793.
  18. 18. Chakkalakal JV, Michel SA, Chin ER, et al. Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet, 2006, 15(9): 1423-1435.
  19. 19. Wehling M, Spencer MJ, Tidball JG. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol, 2001, 155(1): 123-131.
  20. 20. Mizunoya W, Upadhaya R, Burczynski FJ, et al. Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol, 2011, 300(5): C1065-C1077.
  21. 21. Sugiura T, Kawaguchi Y, Soejima M, et al. Increased HGF and c-Met in muscle tissues of polymyositis and dermatomyositis patients: beneficial roles of HGF in muscle regeneration. Clin Immunol, 2010, 136(3): 387-399.
  • 上一篇

    微小RNA-451靶向調(diào)節(jié)鈣結(jié)合蛋白39對MSCs成骨分化的促進(jìn)效應(yīng)
  • 下一篇

    腰骶部椎體滑脫的生物力學(xué)認(rèn)識和分型