• 1四川大學(xué)華西藥學(xué)院藥理系(成都,610041);;
  • 四川大學(xué)華西醫(yī)院 2 生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,3 再生醫(yī)學(xué)研究中心·干細(xì)胞與組織工程研究室;

【摘 要】 目的 音猬因子(Sonic hedgehog,Shh)介導(dǎo)的信號(hào)參與調(diào)控血管生成的重要環(huán)節(jié)。研究不同濃度的重組Shh-N(recombinant Shh N-termitant,rShh-N)對(duì)BMSCs表達(dá)和分泌VEGF和bFGF的影響。 方法 取健康3日齡SD大鼠骨髓分離培養(yǎng)BMSCs,體外擴(kuò)增至第3代,分別用含0、10、100、200 ng/mL rShh-N的L-DMEM培養(yǎng)BMSCs,作為A、B、C、D組。培養(yǎng)12、24、48、72 h后行ELISA法檢測(cè)各組上清液中VEGF和bFGF的濃度,實(shí)時(shí)熒光定量PCR法檢測(cè)各組VEGF和bFGF mRNA的表達(dá)水平。 結(jié)果 在基因表達(dá)水平上,D組各時(shí)間點(diǎn)的VEGF和bFGF mRNA表達(dá)量均明顯高于A組(P  lt; 0.05),且在12、48 h表達(dá)量高于24、72 h(P  lt; 0.01);C組在各時(shí)間點(diǎn)均促進(jìn)bFGF mRNA表達(dá)(P  lt; 0.05),在24~72 h促進(jìn)VEGF mRNA表達(dá)(P  lt; 0.05),且在72 h時(shí)表達(dá)量均最高(P  lt; 0.01);B組在12 h抑制VEGF mRNA表達(dá)(P  lt; 0.05),48 h和72 h表現(xiàn)出促進(jìn)作用(P  lt; 0.05),在12~48 h明顯促進(jìn)bFGF mRNA表達(dá)(P  lt; 0.05),且在48 h時(shí)的表達(dá)量最高(P  lt; 0.01)。在蛋白水平上,D組各時(shí)間點(diǎn)VEGF和bFGF分泌量均高于A組(P  lt; 0.01);C組在24~72 h VEGF和bFGF分泌量明顯多于A組(P  lt; 0.05);B組在12 h和48 h抑制VEGF的分泌(P  lt; 0.05),24 h增加其分泌作用(P  lt; 0.05),而在24 h和48 h促進(jìn)bFGF的分泌(P  lt; 0.05)。各組在48 h和72 h時(shí)的VEGF和bFGF分泌量明顯多于12 h和24 h(P  lt; 0.05)。 結(jié)論 rShh-N可促進(jìn)BMSCs表達(dá)和分泌VEGF和bFGF,為進(jìn)一步探討rShh-N和MSCs聯(lián)合應(yīng)用于治療缺血性相關(guān)疾病以及促進(jìn)骨修復(fù)重建的可行性提供了實(shí)驗(yàn)依據(jù)。

引用本文: 蔡加琴 ,黃益洲,陳曉禾,謝紅蕾,黃永燦,鄧力. 音猬因子調(diào)控BMSCs表達(dá)和分泌VEGF及bFGF的實(shí)驗(yàn)研究. 中國(guó)修復(fù)重建外科雜志, 2012, 26(1): 112-116. doi: 復(fù)制

1. Med, 2007, 17(3): 77-83.
2. signaling. Nat Med, 2005, 11(11): 1197-1204.
3. of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32(4): 1005-1011.
4. hedgehog pathway in response to skeletal muscle ischemia. Circulation, 2003, 108(4): 479-485.
5. neuropathy. Arterioscler Thromb Vasc Biol, 2004, 24(11): 2102-2107.
6. progenitor cell-mediated microvascular remodeling. Circulation, 2006, 113(20): 2413-2424.
7. proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci, 2006, 11(5): 491-496.
8. stem cells improves cardiac function in rats with acute myocardial.
9. infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 2004, 287(6): 2670-2676.
10. differentiation and increases pthrp mRNA expression and ipthrp secretion. Bone, 2003, 32(6): 611-620.
11. and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A, 2010, 16(4): 1235-1246.
12. Cohen MM Jr. The hedgehog signaling network. Am J Med Genet A, 2003, 123A(1): 5-28.
13. Pola R, Ling L, Silver M, et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med, 2001, 7(6): 706-711.
14. Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc Med, 2004, 14(8): 308-313.
15. Lavine KJ, Ornitz DM. Rebuilding the coronary vasculature: hedgehog as a new candidate for pharmacologic revascularization. Trends Cardiovasc.
16. Kusano KF, Pola R, Murayama T, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic.
17. Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest, 2008, 118(7): 2404-2414.
18. 蔡加琴, 鄧力. Hedgehog信號(hào)通路對(duì)MSCs的調(diào)控. 中國(guó)修復(fù)重建外科雜志, 2010, 24(8): 993-996.
19. Donahue JK. Gene therapy, angiogenesis, Sonic Hedgehog: Sonic the Hedgehog to the rescue? Gene Ther, 2006, 13(13): 998-999.
20. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration.
21. Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg, 2006, 30(2): 353-361.
22. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 2003, 75(1): 204-209.
23. Zhou Y, Guan XX, Zhu ZL, et al. Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br J Pharmacol, 2010, 161(7): 1542-1552.
24. 金惠銘, 李先濤. 血管新生的調(diào)控. 中國(guó)微循環(huán), 2001, 5(2): 85-88.
25. Pola R, Ling L, Aprahamian TR, et al. Postnatal recapitulation of embryonic.
26. Kusano KF, Allendoerfer KL, Munger W, et al. Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic.
27. Asai J, Takenaka H, Kusano KF, et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial.
28. Warzecha J, Göttig S, Brüning C, et al. Sonic hedgehog protein promotes.
29. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal.
30. Jemtland R, Divieti P, Lee K, et al. Hedgehog promotes primary osteoblast.
31. Yuasa T, Kataoka H, Kinto N, et al. Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol, 2002, 193(2): 225-232.
32. Dohle E, Fuchs S, Marlen K, et al. Sonic hedgehog promotes angiogenesis.
33. Suzuki T, Miyamoto T, Fujita N, et al. Osteoblast-specific An gio poi etin1 overexpression increases bone mass. Biochem Biophys Res Commun, 2007, 362(4): 1019-1025.
  1. 1. Med, 2007, 17(3): 77-83.
  2. 2. signaling. Nat Med, 2005, 11(11): 1197-1204.
  3. 3. of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32(4): 1005-1011.
  4. 4. hedgehog pathway in response to skeletal muscle ischemia. Circulation, 2003, 108(4): 479-485.
  5. 5. neuropathy. Arterioscler Thromb Vasc Biol, 2004, 24(11): 2102-2107.
  6. 6. progenitor cell-mediated microvascular remodeling. Circulation, 2006, 113(20): 2413-2424.
  7. 7. proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci, 2006, 11(5): 491-496.
  8. 8. stem cells improves cardiac function in rats with acute myocardial.
  9. 9. infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 2004, 287(6): 2670-2676.
  10. 10. differentiation and increases pthrp mRNA expression and ipthrp secretion. Bone, 2003, 32(6): 611-620.
  11. 11. and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A, 2010, 16(4): 1235-1246.
  12. 12. Cohen MM Jr. The hedgehog signaling network. Am J Med Genet A, 2003, 123A(1): 5-28.
  13. 13. Pola R, Ling L, Silver M, et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med, 2001, 7(6): 706-711.
  14. 14. Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc Med, 2004, 14(8): 308-313.
  15. 15. Lavine KJ, Ornitz DM. Rebuilding the coronary vasculature: hedgehog as a new candidate for pharmacologic revascularization. Trends Cardiovasc.
  16. 16. Kusano KF, Pola R, Murayama T, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic.
  17. 17. Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest, 2008, 118(7): 2404-2414.
  18. 18. 蔡加琴, 鄧力. Hedgehog信號(hào)通路對(duì)MSCs的調(diào)控. 中國(guó)修復(fù)重建外科雜志, 2010, 24(8): 993-996.
  19. 19. Donahue JK. Gene therapy, angiogenesis, Sonic Hedgehog: Sonic the Hedgehog to the rescue? Gene Ther, 2006, 13(13): 998-999.
  20. 20. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration.
  21. 21. Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg, 2006, 30(2): 353-361.
  22. 22. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 2003, 75(1): 204-209.
  23. 23. Zhou Y, Guan XX, Zhu ZL, et al. Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br J Pharmacol, 2010, 161(7): 1542-1552.
  24. 24. 金惠銘, 李先濤. 血管新生的調(diào)控. 中國(guó)微循環(huán), 2001, 5(2): 85-88.
  25. 25. Pola R, Ling L, Aprahamian TR, et al. Postnatal recapitulation of embryonic.
  26. 26. Kusano KF, Allendoerfer KL, Munger W, et al. Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic.
  27. 27. Asai J, Takenaka H, Kusano KF, et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial.
  28. 28. Warzecha J, Göttig S, Brüning C, et al. Sonic hedgehog protein promotes.
  29. 29. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal.
  30. 30. Jemtland R, Divieti P, Lee K, et al. Hedgehog promotes primary osteoblast.
  31. 31. Yuasa T, Kataoka H, Kinto N, et al. Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol, 2002, 193(2): 225-232.
  32. 32. Dohle E, Fuchs S, Marlen K, et al. Sonic hedgehog promotes angiogenesis.
  33. 33. Suzuki T, Miyamoto T, Fujita N, et al. Osteoblast-specific An gio poi etin1 overexpression increases bone mass. Biochem Biophys Res Commun, 2007, 362(4): 1019-1025.