李彥林 1 , 許鵬 1# , 韓睿 2 , 王建偉 1 , 何川 1 , 王國梁 1 , 仝路 1 , 胡猛 1
  • 昆明醫(yī)科大學第一附屬醫(yī)院(昆明,650032)1運動醫(yī)學科,2內科;

目的通過MRI二維影像對股骨髁間窩進行三維重建及測量,探討虛擬股骨髁間窩成形術的可行性。 方法2009年9月-12月募集健康志愿者30名,男、女各15名,年齡20~30歲,身高150~185 cm,體重45~74 kg。排除膝關節(jié)疾病和手術史。根據(jù)性別不同將研究對象分為男性組和女性組,并將同性別的膝關節(jié)分為左膝及右膝2個亞組。對30名志愿者行雙膝關節(jié)MRI掃描,將MRI二維圖像導入交互式醫(yī)學影像控制系統(tǒng)Mimics10.01,并對膝關節(jié)進行三維重建,通過三維圖像測量獲取髁間窩相關解剖學數(shù)據(jù):髁間窩寬度(notch width,NW),內、外股骨髁寬度(condylar width,CW),髁間窩指數(shù)(notch width index,NWI)。收集2010年1月-3月收治的前交叉韌帶(anterior cruciate ligament,ACL)損傷患者膝關節(jié)三維圖像,篩選出4例髁間窩狹窄(NWI≤0.2)的患者,在患者膝關節(jié)三維圖像上虛擬髁間窩成形術,計算截骨厚度,并在ACL重建術中實施,評估移植物與髁間窩的撞擊情況。 結果男性組與女性組雙側股骨髁間窩三維模型的NW、CW比較差異均有統(tǒng)計學意義(P  lt; 0.05),NWI比較差異無統(tǒng)計學意義(P  gt; 0.05)。男性組內及女性組內左、右膝股骨髁間窩三維模型的NW、CW、NWI比較差異均無統(tǒng)計學意義(P  gt; 0.05)。在ACL重建術中,根據(jù)術前測量結果行髁間窩成形術后患者的NWI達正常值(NWI  gt; 0.22),韌帶重建后關節(jié)鏡觀察以及術后3個月隨訪時行基于MRI二維圖像的數(shù)字化三維重建膝關節(jié)模型并測量發(fā)現(xiàn)重建韌帶與髁間窩無撞擊。 結論計算機三維重建模型與實體的髁間窩形態(tài)有較高相似度,NWI可較好地反映髁間窩狹窄程度;計算機虛擬髁間窩成形術可為ACL重建提供術前參考,以避免術后移植物與髁間窩的撞擊。

引用本文: 李彥林,許鵬,韓睿,王建偉,何川,王國梁,仝路,胡猛. 基于MRI二維影像下股骨髁間窩的三維可視化研究. 中國修復重建外科雜志, 2012, 26(10): 1182-1186. doi: 復制

版權信息: ?四川大學華西醫(yī)院華西期刊社《中國修復重建外科雜志》版權所有,未經授權不得轉載、改編

1. 1 韓曉鵬, 紀斌平. 前交叉韌帶重建技術的進展. 國際骨科學雜志, 2008, 29(3): 173-176. 2 李健, 董大翠, 余世勇, 等. 股骨髁間窩的應用解剖及其臨床研究. 中華實驗外科雜志, 2001, 18(2): 140-141.
2. Vergis A, Gillquist J. Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy, 1995, 11(3): 312-321.
3. Pape D, Seil R, Adam F, et al. Blood loss in anterior cruciate ligament (ACL) reconstruction with and without intercondylar notchplasty: does it affect the clinical outcome? Arch Orthop Trauma Surg, 2001, 121(10): 574-577.
4. LaPrade RF, Terry GC, Montgomery RD, et al. The effects of aggressive notchplasty on the normal knee in dogs. Am J Sports Med, 1998, 26(2): 193-200.
5. Asahina S, Muneta T, Ezura Y, et al. Notchplasty in anterior cruciate ligament reconstruction: an experimental animal study? Arthroscopy, 2000, 16(2): 165-172.
6. Souryal TO, Freemen TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med, 1993, 21(4): 535-539.
7. Tillman MD, Smith KR, Bauer JA, et al. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee, 2002, 9(1): 41-46.
8. Van Eck CF, Martins CA, Kopf S, et al. Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthroscopy, 2011, 27(2): 207-212.
9. Osterhoff G, Löffler S, Steinke H, et al. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee, 2011, 18(2): 98-103.
10. Shelbourne KD, Gray T, Benner RW, et al. Intercondylar notch width measurement differences between african american and white men and women with intact anterior cruciate ligament knees. Am J Sports Med, 2007, 35(8): 1304-1307.
11. Simon RA, Everhart JS, Nagaraja HN, et al. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech, 2010, 43(9): 1702-1707.
12. Kopf S, Musahl V, Tashman S, et al. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc, 2009, 17(3): 213-219.
13. Colvin AC, Shen W, Musahl V, et al. Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2009, 17(8): 956-963.
14. Van de Velde SK, DeFrate LE, Gill TJ, et al. The effect of anterior cruciate ligament deficiency on the in vivo elongation of the medial and lateral collateral ligaments. Am J Sports Med, 2007, 35(2): 294-300.
15. Suggs J, Wang C, Li G, et al. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction-a 3D computational simulation. Clin Biomech (Bristol, Avon), 2003, 18(1): 35-43.
16. Hirokawa S, Tsuruno R. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J Biomech, 2000, 33(9): 1069-1077.
17. Limbert G, Taylor M, Middleton J, et al. Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J Biomech, 2004, 37(11): 1723-1731.
18. 胡巖君, 余斌, 蘇秀云, 等. 基于MRI、CT影像下膝關節(jié)及交叉韌帶重建可視化的初步應用研究. 中華創(chuàng)傷骨科雜志, 2007, 9(5): 469-472.
19. 許鵬, 李彥林, 陳文棟, 等. MRI影像下股骨髁間窩三維數(shù)字化解剖學數(shù)據(jù)與實體解剖測量值的差異. 中國組織工程研究與臨床康復, 2011, 15(43): 8006-8009.
  1. 1. 1 韓曉鵬, 紀斌平. 前交叉韌帶重建技術的進展. 國際骨科學雜志, 2008, 29(3): 173-176. 2 李健, 董大翠, 余世勇, 等. 股骨髁間窩的應用解剖及其臨床研究. 中華實驗外科雜志, 2001, 18(2): 140-141.
  2. 2. Vergis A, Gillquist J. Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy, 1995, 11(3): 312-321.
  3. 3. Pape D, Seil R, Adam F, et al. Blood loss in anterior cruciate ligament (ACL) reconstruction with and without intercondylar notchplasty: does it affect the clinical outcome? Arch Orthop Trauma Surg, 2001, 121(10): 574-577.
  4. 4. LaPrade RF, Terry GC, Montgomery RD, et al. The effects of aggressive notchplasty on the normal knee in dogs. Am J Sports Med, 1998, 26(2): 193-200.
  5. 5. Asahina S, Muneta T, Ezura Y, et al. Notchplasty in anterior cruciate ligament reconstruction: an experimental animal study? Arthroscopy, 2000, 16(2): 165-172.
  6. 6. Souryal TO, Freemen TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med, 1993, 21(4): 535-539.
  7. 7. Tillman MD, Smith KR, Bauer JA, et al. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee, 2002, 9(1): 41-46.
  8. 8. Van Eck CF, Martins CA, Kopf S, et al. Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthroscopy, 2011, 27(2): 207-212.
  9. 9. Osterhoff G, Löffler S, Steinke H, et al. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee, 2011, 18(2): 98-103.
  10. 10. Shelbourne KD, Gray T, Benner RW, et al. Intercondylar notch width measurement differences between african american and white men and women with intact anterior cruciate ligament knees. Am J Sports Med, 2007, 35(8): 1304-1307.
  11. 11. Simon RA, Everhart JS, Nagaraja HN, et al. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech, 2010, 43(9): 1702-1707.
  12. 12. Kopf S, Musahl V, Tashman S, et al. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc, 2009, 17(3): 213-219.
  13. 13. Colvin AC, Shen W, Musahl V, et al. Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2009, 17(8): 956-963.
  14. 14. Van de Velde SK, DeFrate LE, Gill TJ, et al. The effect of anterior cruciate ligament deficiency on the in vivo elongation of the medial and lateral collateral ligaments. Am J Sports Med, 2007, 35(2): 294-300.
  15. 15. Suggs J, Wang C, Li G, et al. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction-a 3D computational simulation. Clin Biomech (Bristol, Avon), 2003, 18(1): 35-43.
  16. 16. Hirokawa S, Tsuruno R. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J Biomech, 2000, 33(9): 1069-1077.
  17. 17. Limbert G, Taylor M, Middleton J, et al. Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J Biomech, 2004, 37(11): 1723-1731.
  18. 18. 胡巖君, 余斌, 蘇秀云, 等. 基于MRI、CT影像下膝關節(jié)及交叉韌帶重建可視化的初步應用研究. 中華創(chuàng)傷骨科雜志, 2007, 9(5): 469-472.
  19. 19. 許鵬, 李彥林, 陳文棟, 等. MRI影像下股骨髁間窩三維數(shù)字化解剖學數(shù)據(jù)與實體解剖測量值的差異. 中國組織工程研究與臨床康復, 2011, 15(43): 8006-8009.