• 成都軍區(qū)昆明總醫(yī)院(昆明,650032)1 骨科 全軍創(chuàng)傷骨科研究所,2 干細(xì)胞與組織器官工程中心;

目的 比較研究不同缺損直徑對(duì)小鼠脛骨中段1/3單層骨皮質(zhì)缺損模型愈合的影響,為組織工程材料研究、骨缺損修復(fù)及其分子機(jī)制研究和骨缺損基因治療研究等提供動(dòng)物模型。 方法取8周齡雄性C57BL/6J小鼠10只,體重(20 ± 2)g,隨機(jī)分為A、B兩組,每組5只。利用牙科磨鉆分別制備直徑為0.8 mm(A組)和1.0 mm(B組)小鼠脛骨中段1/3單層骨皮質(zhì)缺損模型。于造模后7、21、28 d攝鉬靶X線片觀察缺損修復(fù)情況;28 d對(duì)骨缺損修復(fù)行Micro CT掃描及骨組織三維成像;28 d取材行HE染色觀察。 結(jié)果B組5只小鼠造模7 d內(nèi)均發(fā)生二次骨折,A組無骨折發(fā)生。X線片、Micro CT和HE染色均顯示A組脛骨單層骨皮質(zhì)缺損可在28 d達(dá)骨性愈合。Micro CT定量分析骨小梁示,A組骨小梁數(shù)目、骨小梁密度、骨體積顯著高于B組,骨質(zhì)密度顯著低于B組,差異均有統(tǒng)計(jì)學(xué)意義(P  lt; 0.05);兩組骨小梁分離度、骨小梁厚度差異無統(tǒng)計(jì)學(xué)意義(P  gt; 0.05)。 結(jié)論小鼠脛骨中段1/3單層直徑0.8 mm骨皮質(zhì)缺損模型是研究脛骨缺損無外固定缺損修復(fù)機(jī)制和骨替代植入材料的理想動(dòng)物模型。

引用本文: 李福兵,徐永清,潘興華,李霞,劉華,楊杜明,李軍,沙勇,石健,趙萬秋. 小鼠脛骨中段1/3不同缺損直徑單層骨皮質(zhì)缺損模型比較研究. 中國修復(fù)重建外科雜志, 2012, 26(10): 1218-1222. doi: 復(fù)制

1. Masquelet AC, Beque T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am, 2010, 41(1): 27-37.
2. Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am, 2010, 41(1): 1-4.
3. Hesse E, Kluge G, Atfi A, et al. Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone, 2010, 46(5): 1457-1463.
4. Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone, 2005, 37(5): 688-698.
5. Van de Watering FC, van den Beucken JJ, Walboomers XF, et al. Calcium phosphate/poly (D, L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res, 2012, 23(2): 151-159.
6. Brevi BC, Magri AS, Toma L, et al. Cranioplasty for repair of a large bone defect with autologous and homologous bone in children. J Pediatr Surg, 2010, 45(4): E17-20.
7. Si HP, Lu ZH, Lin YL, et al. Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair. Chin Med J (Engl), 2012, 125(5): 906-911.
8. 李福兵, 杜曉蘭, 余瑛, 等. 骨形成蛋白4條件性RNA干擾小鼠的建立. 遺傳, 2008, 30(3): 341-346.
9. 李福兵, 趙玲, 魯秀敏, 等. 成熟成骨細(xì)胞中敲除基因fgfr1小鼠的制備. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2008, 30(4): 280-283.
10. 湯譯博, 趙亮, 蘇佳燦. 骨折動(dòng)物模型的研究進(jìn)展. 中國骨傷, 2011, 24(1): 91-93.
11. Monfoulet L, Rabier B, Chassande O, et al. Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int, 2010, 86(1): 72-81.
12. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
13. Gokhale A, Rwigema JC, Epperly MW, et al. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model. In Vivo, 2010, 24(4): 377-385.
14. Kim MG, Shin DM, Lee SW. The healing of critical-sized bone defect of rat zygomatic arch with particulate bone graft and bone morphogenetic protein-2. J Plast Reconstr Aesthet Surg, 2010, 63(3): 459-466.
15. de Girolamo L, Arrigoni E, Stanco D, et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res, 2011, 29(1): 100-108.
16. 靳慧勇, 侯天勇, 羅飛, 等. 小鼠股骨臨界骨缺損模型的構(gòu)建及評(píng)估. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2011, 33(22): 2331-2334.
17. Nagashima M, Sakai A, Uchida S, et al. Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone, 2005, 36(3): 502-511.
18. Zhao M, Zhou J, Li X, et al. Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery, 2011, 31(2): 130-137.
19. Anderson ML, Dhert WJ, de Bruijn JD, et al. Critical size defect in the goat’s os ilium. A model to evaluate bone grafts and substitutes. Clin Orthop Relat Res, 1999, (364): 231-239.
20. Lian Z, Chuanchang D, Wei L, et al. Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res, 2010, 28(3): 412-418.
21. Riegger C, Kropil P, Jungbluth P, et al. Quantitative assessment of bone defect healing by multidetector CT in a pig model. Skeletal Radiol, 2012, 41(5): 531-537.
22. Thoma DS, Halg GA, Dard MM, et al. Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res, 2009, 20(1): 7-16.
  1. 1. Masquelet AC, Beque T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am, 2010, 41(1): 27-37.
  2. 2. Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am, 2010, 41(1): 1-4.
  3. 3. Hesse E, Kluge G, Atfi A, et al. Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone, 2010, 46(5): 1457-1463.
  4. 4. Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone, 2005, 37(5): 688-698.
  5. 5. Van de Watering FC, van den Beucken JJ, Walboomers XF, et al. Calcium phosphate/poly (D, L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res, 2012, 23(2): 151-159.
  6. 6. Brevi BC, Magri AS, Toma L, et al. Cranioplasty for repair of a large bone defect with autologous and homologous bone in children. J Pediatr Surg, 2010, 45(4): E17-20.
  7. 7. Si HP, Lu ZH, Lin YL, et al. Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair. Chin Med J (Engl), 2012, 125(5): 906-911.
  8. 8. 李福兵, 杜曉蘭, 余瑛, 等. 骨形成蛋白4條件性RNA干擾小鼠的建立. 遺傳, 2008, 30(3): 341-346.
  9. 9. 李福兵, 趙玲, 魯秀敏, 等. 成熟成骨細(xì)胞中敲除基因fgfr1小鼠的制備. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2008, 30(4): 280-283.
  10. 10. 湯譯博, 趙亮, 蘇佳燦. 骨折動(dòng)物模型的研究進(jìn)展. 中國骨傷, 2011, 24(1): 91-93.
  11. 11. Monfoulet L, Rabier B, Chassande O, et al. Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int, 2010, 86(1): 72-81.
  12. 12. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
  13. 13. Gokhale A, Rwigema JC, Epperly MW, et al. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model. In Vivo, 2010, 24(4): 377-385.
  14. 14. Kim MG, Shin DM, Lee SW. The healing of critical-sized bone defect of rat zygomatic arch with particulate bone graft and bone morphogenetic protein-2. J Plast Reconstr Aesthet Surg, 2010, 63(3): 459-466.
  15. 15. de Girolamo L, Arrigoni E, Stanco D, et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res, 2011, 29(1): 100-108.
  16. 16. 靳慧勇, 侯天勇, 羅飛, 等. 小鼠股骨臨界骨缺損模型的構(gòu)建及評(píng)估. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2011, 33(22): 2331-2334.
  17. 17. Nagashima M, Sakai A, Uchida S, et al. Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone, 2005, 36(3): 502-511.
  18. 18. Zhao M, Zhou J, Li X, et al. Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery, 2011, 31(2): 130-137.
  19. 19. Anderson ML, Dhert WJ, de Bruijn JD, et al. Critical size defect in the goat’s os ilium. A model to evaluate bone grafts and substitutes. Clin Orthop Relat Res, 1999, (364): 231-239.
  20. 20. Lian Z, Chuanchang D, Wei L, et al. Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res, 2010, 28(3): 412-418.
  21. 21. Riegger C, Kropil P, Jungbluth P, et al. Quantitative assessment of bone defect healing by multidetector CT in a pig model. Skeletal Radiol, 2012, 41(5): 531-537.
  22. 22. Thoma DS, Halg GA, Dard MM, et al. Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res, 2009, 20(1): 7-16.