目的綜述細(xì)胞外基質(zhì)(extracellular matrix,ECM)材料在組織工程中的研究現(xiàn)狀及臨床應(yīng)用進(jìn)展。 方法查閱近年來國內(nèi)外ECM材料制備方法、生物相容性、生物力學(xué)特性、可降解性能和臨床應(yīng)用等方面的相關(guān)文獻(xiàn),并進(jìn)行分析總結(jié)。 結(jié)果ECM制備方法的改進(jìn)和免疫特性認(rèn)識(shí)的深入,為其用于組織的修復(fù)重建奠定了一定基礎(chǔ)。一系列動(dòng)物實(shí)驗(yàn)研究表明了小腸黏膜下層、膀胱ECM、脫細(xì)胞真皮等ECM材料應(yīng)用于尿道、膀胱、動(dòng)脈、皮膚等組織器官修復(fù)重建的可行性和有效性,顯示其具有廣闊的臨床應(yīng)用前景。 結(jié)論ECM材料是一種良好的生物衍生支架材料,有望成為組織修復(fù)重建中替代材料的重要來源。
引用本文: 員海超,蒲春曉,魏強(qiáng),韓平. 組織工程細(xì)胞外基質(zhì)材料研究進(jìn)展. 中國修復(fù)重建外科雜志, 2012, 26(10): 1251-1254. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Huebsh N, Moony DJ. Inspiration and application in the evolution of biomaterials. Nature, 2009, 462(7272): 426-432. |
2. | 羅靜聰, 楊志明, 李秀群, 等. 小腸黏膜下層細(xì)胞相容性的研究. 生物醫(yī)學(xué)工程學(xué)雜志, 2004, 21(5): 800-804. |
3. | 韓平, 宋超, 魏強(qiáng), 等. 組織工程膀胱細(xì)胞外基質(zhì)生物相容性的實(shí)驗(yàn)研究. 四川大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2007, 38(6): 1009-1012. |
4. | 孔清泉, 高博, 幸?guī)V, 等. 以小腸黏膜下層為支架體外構(gòu)建組織工程軟骨的實(shí)驗(yàn)研究. 生物醫(yī)學(xué)工程學(xué)雜志, 2011, 28(3): 521-525. |
5. | Zhu WD, Xu YM, Feng C, et al. Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe A, 2011, 50(11): 1420-1425. |
6. | Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683. |
7. | 羅靜聰, 楊志明. 小腸黏膜下層的制備及其特性的研究進(jìn)展. 中國修復(fù)重建外科雜志, 2003, 17(5): 425-428. |
8. | Luo JC, Chen W, Chen XH, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32(3): 706-713. |
9. | Raghavan D, Kropp BP, Lin HK, et al. Physical characteristics of small intestinal submucosa scaffolds are location-dependent. J Biomed Mater Res A, 2005, 73(1): 90-96. |
10. | Basile P, Dadali T, Jacobson J, et al. Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Mol Ther, 2008, 16(3): 466-473. |
11. | Giannini S, Buda R, Caprio F, et al. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop, 2008, 32(2): 145-151. |
12. | Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature, s platform to engineer a bioartificial heart. Nat Med, 2008, 14(2): 213-221. |
13. | 羅靜聰, 李秀群, 楊志明, 等. 脫細(xì)胞羊膜的制備及其生物相容性研究. 中國修復(fù)重建外科雜志, 2004, 18(2): 108-111. |
14. | Brown B, Lindberg K, Reing J, et al. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng, 2006, 12(3): 519-526. |
15. | Hodde JP, Record RD, Liang HA, et al. Vascular endothelial growth factor in porcine- derived extracellular matrix. Endothelium, 2001, 8(1): 11-24. |
16. | Joo KJ, Kim BS, Han JH, et al. Porcine vesical acellular matrix graft of tunica albuginea for penile reconstruction. Asian J Androl, 2006, 8(5): 543-548. |
17. | Chun SY, Lim GJ, Kwon TG, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 2007, 28(29): 4251-4256. |
18. | Dahms SE, Piechota HJ, Dahiya R, et al. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol, 1998, 82(3): 411-419. |
19. | Freytes DO, Badylak SF, Webster TJ, et al. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials, 2004, 25(2): 2353-2361. |
20. | Badylak S, Kokini K, Tullius B, et al. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res, 2001, 99(2): 282-287. |
21. | Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, et al. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg (Am), 2007, 89(3): 621-630. |
22. | Valentin JE, Stewart-Akers AM, Gilbert TW, et al. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A, 2009, 15(7): 1687-1694. |
23. | Deeken CR, Eliason BJ, Pichert MD, et al. Differentiation of biologic scaffold materials through physicomechanical, thermal, and enzymatic degradation techniques. Ann Surg, 2012, 255(3): 595-604. |
24. | Ferguson RE Jr, Pu LL. Repair of the abdominal donor-site fascial defect with small intestinal submucosa (Surgisis) after TRAM flap breast reconstruction. Ann Plast Surg, 2007, 58(1): 95-98. |
25. | Ansaloni L, Catena F, Gagliardi S, et al. Hernia repair with porcine small-intestinal submucosa. Hernia, 2007, 11(4): 321-326. |
26. | Ho KL, Witte MN, Bird ET. 8-ply small intestinal submucosa tension-free sling: spectrum of postoperative inflammation. J Urol, 2004, 171(1): 268-271. |
27. | Petter-Puchner AH, Fortelny RH, Mittermayr R, et al. Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc, 2006, 20(6): 942-946. |
28. | McPherson TB, Liang H, Record RD, et al. Galalpha(1, 3)Gal epitope in porcine small intestinal submucosa. Tissue Eng, 2000, 6(3): 233-239. |
29. | Galili U, Clark MR, Shohet SB, et al. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1-3Gal epitope in primates. Proc Natl Acad Sci U S A, 1987, 84(5): 1369-1373. |
30. | Galili U, Shohet SB, Kobrin E, et al. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem, 1988, 263(33): 17755-17762. |
31. | Galili U, Rachmilewitz EA, Peleg A, et al. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med, 1984, 160(5): 1519-1531. |
32. | Daly KA, Stewart-Akers AM, Hara H, et al. Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A, 2009, 15(12): 3877-3888. |
33. | Allman AJ, McPherson TB, Badylak SF, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640. |
34. | 黃翔, 羅靜聰, 廖勇, 等. 小腸黏膜下層修復(fù)尿道的實(shí)驗(yàn)研究. 中國修復(fù)重建外科雜志, 2006, 20(3): 206-209. |
35. | Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology, 1998, 52(1): 138-142. |
36. | Badylak SF, Lantz GC, Coffey A, et al. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res, 1989, 47(1): 74-80. |
37. | Padalino MA, Castellani C, Dedja A, et al. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg, 2012. [Epub ahead of print]. |
38. | Ko R, Kazacos EA, Snyder S, et al. Tensile strength comparison of small intestinal submucosa body wall repair. J Surg Res, 2006, 135(1): 9-17. |
39. | Knoll LD. Use of small intestinal submucosa graft for the surgical management of Peyronie’s disease. J Urol, 2007, 178(6): 2474-2478. |
40. | Malcaeney HL, Bonar F, Murrell GA. Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant: a report of 4 cases. Am J Sports Med, 2005, 33(6): 907-911. |
41. | Callcut RA, Schurr MJ, Sloan M, et al. Clinical experience with Alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns, 2006, 32(5): 583-588. |
42. | Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology, 1999, 54(3): 407-410. |
43. | el-Kassaby A, AbouShwared T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol, 2008, 179(4): 1432-1436. |
44. | Limpert JN, Desai AR, Kumpf AL, et al. Repair of abdominal wall defects with bovine pericardium. Am J Surg, 2009, 198(5): e60-655. |
45. | 鞠曉軍, 潘鋒, 柏樹令, 等. 人脫細(xì)胞羊膜復(fù)合脂肪源性干細(xì)胞修復(fù)大鼠全層皮膚缺損的實(shí)驗(yàn)研究. 中國修復(fù)重建外科雜志, 2010, 24(2): 143-149. |
46. | 胡云飛, 楊嗣星, 王玲瓏, 等. 尿道細(xì)胞外基質(zhì)在兔尿道重建中的應(yīng)用. 中華整形外科雜志, 2009, 25(1): 54-57. |
- 1. Huebsh N, Moony DJ. Inspiration and application in the evolution of biomaterials. Nature, 2009, 462(7272): 426-432.
- 2. 羅靜聰, 楊志明, 李秀群, 等. 小腸黏膜下層細(xì)胞相容性的研究. 生物醫(yī)學(xué)工程學(xué)雜志, 2004, 21(5): 800-804.
- 3. 韓平, 宋超, 魏強(qiáng), 等. 組織工程膀胱細(xì)胞外基質(zhì)生物相容性的實(shí)驗(yàn)研究. 四川大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2007, 38(6): 1009-1012.
- 4. 孔清泉, 高博, 幸?guī)V, 等. 以小腸黏膜下層為支架體外構(gòu)建組織工程軟骨的實(shí)驗(yàn)研究. 生物醫(yī)學(xué)工程學(xué)雜志, 2011, 28(3): 521-525.
- 5. Zhu WD, Xu YM, Feng C, et al. Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe A, 2011, 50(11): 1420-1425.
- 6. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
- 7. 羅靜聰, 楊志明. 小腸黏膜下層的制備及其特性的研究進(jìn)展. 中國修復(fù)重建外科雜志, 2003, 17(5): 425-428.
- 8. Luo JC, Chen W, Chen XH, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32(3): 706-713.
- 9. Raghavan D, Kropp BP, Lin HK, et al. Physical characteristics of small intestinal submucosa scaffolds are location-dependent. J Biomed Mater Res A, 2005, 73(1): 90-96.
- 10. Basile P, Dadali T, Jacobson J, et al. Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Mol Ther, 2008, 16(3): 466-473.
- 11. Giannini S, Buda R, Caprio F, et al. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop, 2008, 32(2): 145-151.
- 12. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature, s platform to engineer a bioartificial heart. Nat Med, 2008, 14(2): 213-221.
- 13. 羅靜聰, 李秀群, 楊志明, 等. 脫細(xì)胞羊膜的制備及其生物相容性研究. 中國修復(fù)重建外科雜志, 2004, 18(2): 108-111.
- 14. Brown B, Lindberg K, Reing J, et al. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng, 2006, 12(3): 519-526.
- 15. Hodde JP, Record RD, Liang HA, et al. Vascular endothelial growth factor in porcine- derived extracellular matrix. Endothelium, 2001, 8(1): 11-24.
- 16. Joo KJ, Kim BS, Han JH, et al. Porcine vesical acellular matrix graft of tunica albuginea for penile reconstruction. Asian J Androl, 2006, 8(5): 543-548.
- 17. Chun SY, Lim GJ, Kwon TG, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 2007, 28(29): 4251-4256.
- 18. Dahms SE, Piechota HJ, Dahiya R, et al. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol, 1998, 82(3): 411-419.
- 19. Freytes DO, Badylak SF, Webster TJ, et al. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials, 2004, 25(2): 2353-2361.
- 20. Badylak S, Kokini K, Tullius B, et al. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res, 2001, 99(2): 282-287.
- 21. Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, et al. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg (Am), 2007, 89(3): 621-630.
- 22. Valentin JE, Stewart-Akers AM, Gilbert TW, et al. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A, 2009, 15(7): 1687-1694.
- 23. Deeken CR, Eliason BJ, Pichert MD, et al. Differentiation of biologic scaffold materials through physicomechanical, thermal, and enzymatic degradation techniques. Ann Surg, 2012, 255(3): 595-604.
- 24. Ferguson RE Jr, Pu LL. Repair of the abdominal donor-site fascial defect with small intestinal submucosa (Surgisis) after TRAM flap breast reconstruction. Ann Plast Surg, 2007, 58(1): 95-98.
- 25. Ansaloni L, Catena F, Gagliardi S, et al. Hernia repair with porcine small-intestinal submucosa. Hernia, 2007, 11(4): 321-326.
- 26. Ho KL, Witte MN, Bird ET. 8-ply small intestinal submucosa tension-free sling: spectrum of postoperative inflammation. J Urol, 2004, 171(1): 268-271.
- 27. Petter-Puchner AH, Fortelny RH, Mittermayr R, et al. Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc, 2006, 20(6): 942-946.
- 28. McPherson TB, Liang H, Record RD, et al. Galalpha(1, 3)Gal epitope in porcine small intestinal submucosa. Tissue Eng, 2000, 6(3): 233-239.
- 29. Galili U, Clark MR, Shohet SB, et al. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1-3Gal epitope in primates. Proc Natl Acad Sci U S A, 1987, 84(5): 1369-1373.
- 30. Galili U, Shohet SB, Kobrin E, et al. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem, 1988, 263(33): 17755-17762.
- 31. Galili U, Rachmilewitz EA, Peleg A, et al. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med, 1984, 160(5): 1519-1531.
- 32. Daly KA, Stewart-Akers AM, Hara H, et al. Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A, 2009, 15(12): 3877-3888.
- 33. Allman AJ, McPherson TB, Badylak SF, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640.
- 34. 黃翔, 羅靜聰, 廖勇, 等. 小腸黏膜下層修復(fù)尿道的實(shí)驗(yàn)研究. 中國修復(fù)重建外科雜志, 2006, 20(3): 206-209.
- 35. Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology, 1998, 52(1): 138-142.
- 36. Badylak SF, Lantz GC, Coffey A, et al. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res, 1989, 47(1): 74-80.
- 37. Padalino MA, Castellani C, Dedja A, et al. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg, 2012. [Epub ahead of print].
- 38. Ko R, Kazacos EA, Snyder S, et al. Tensile strength comparison of small intestinal submucosa body wall repair. J Surg Res, 2006, 135(1): 9-17.
- 39. Knoll LD. Use of small intestinal submucosa graft for the surgical management of Peyronie’s disease. J Urol, 2007, 178(6): 2474-2478.
- 40. Malcaeney HL, Bonar F, Murrell GA. Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant: a report of 4 cases. Am J Sports Med, 2005, 33(6): 907-911.
- 41. Callcut RA, Schurr MJ, Sloan M, et al. Clinical experience with Alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns, 2006, 32(5): 583-588.
- 42. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology, 1999, 54(3): 407-410.
- 43. el-Kassaby A, AbouShwared T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol, 2008, 179(4): 1432-1436.
- 44. Limpert JN, Desai AR, Kumpf AL, et al. Repair of abdominal wall defects with bovine pericardium. Am J Surg, 2009, 198(5): e60-655.
- 45. 鞠曉軍, 潘鋒, 柏樹令, 等. 人脫細(xì)胞羊膜復(fù)合脂肪源性干細(xì)胞修復(fù)大鼠全層皮膚缺損的實(shí)驗(yàn)研究. 中國修復(fù)重建外科雜志, 2010, 24(2): 143-149.
- 46. 胡云飛, 楊嗣星, 王玲瓏, 等. 尿道細(xì)胞外基質(zhì)在兔尿道重建中的應(yīng)用. 中華整形外科雜志, 2009, 25(1): 54-57.