• 1 中國(guó)輻射防護(hù)研究院 山西奧瑞生物材料有限公司(太原,030006);;
  • 2 武警山西總隊(duì)醫(yī)院泌尿外科;

目的利用近交系大鼠實(shí)驗(yàn)?zāi)P驮u(píng)價(jià)同基因細(xì)胞源組織工程皮膚修復(fù)大鼠全層皮膚缺損的效果,為其臨床應(yīng)用奠定基礎(chǔ)。 方法取近交系F344大鼠乳鼠皮膚,采用Dispase-胰蛋白酶兩步消化法分離培養(yǎng)表皮細(xì)胞;取SD大鼠皮膚,按照高滲鹽-SDS-胰蛋白酶化學(xué)處理法制備脫細(xì)胞真皮基質(zhì);依次利用浸沒(méi)式培養(yǎng)和氣液分離培養(yǎng)法將第2代表皮細(xì)胞與脫細(xì)胞真皮基質(zhì)復(fù)合體外培養(yǎng)構(gòu)建組織工程皮膚。取4~5周齡近交系F344大鼠36只,于大鼠背部?jī)蓚?cè)對(duì)稱制備全層皮膚缺損,缺損面積為預(yù)實(shí)驗(yàn)確定的1.5 cm × 1.5 cm。將72個(gè)創(chuàng)面隨機(jī)分為3組(n=24),兩側(cè)移植不同修復(fù)材料:實(shí)驗(yàn)組移植組織工程皮膚、陰性對(duì)照組移植同種異體脫細(xì)胞真皮基質(zhì)、陽(yáng)性對(duì)照組移植自體全層皮膚(非原位移植)。術(shù)后行大體觀察、皮片成活率、創(chuàng)面收縮率測(cè)量及組織學(xué)觀察,評(píng)價(jià)修復(fù)效果。 結(jié)果實(shí)驗(yàn)組術(shù)后4周創(chuàng)面可達(dá)到Ⅰ期愈合,與周圍組織緊密連接,外觀接近周圍正常皮膚。術(shù)后4周,陰性對(duì)照組皮片成活率為0;實(shí)驗(yàn)組為62.5%(15/24),與陽(yáng)性對(duì)照組91.7%(22/24)比較差異有統(tǒng)計(jì)學(xué)意義(χ2 =5.779,P=0.016)。術(shù)后4周,實(shí)驗(yàn)組和陽(yáng)性對(duì)照組創(chuàng)面收縮率顯著低于陰性對(duì)照組(P  lt; 0.05),實(shí)驗(yàn)組與陽(yáng)性對(duì)照組間差異無(wú)統(tǒng)計(jì)學(xué)意義(P  gt; 0.05)。組織學(xué)觀察示實(shí)驗(yàn)組術(shù)后1周有輕微炎性反應(yīng);術(shù)后2周真皮層小血管和成纖維細(xì)胞大量增生,表皮層逐漸分化成熟;術(shù)后4周時(shí)伴隨新生膠原纖維沉積,移植物真皮層出現(xiàn)膠原改建。 結(jié)論同基因細(xì)胞源組織工程皮膚能夠有效修復(fù)大鼠全層皮膚缺損,在防止創(chuàng)面收縮和促進(jìn)創(chuàng)面愈合等方面均可達(dá)到類似于自體全層皮膚移植的效果。

引用本文: 董麗,馬紹英,徐勇杰,張育敏,王旭昇,李寶興. 同基因細(xì)胞源組織工程皮膚修復(fù)皮膚缺損的實(shí)驗(yàn)研究. 中國(guó)修復(fù)重建外科雜志, 2012, 26(11): 1375-1380. doi: 復(fù)制

1. Shevchenko RV, James SL, James SE. A review of tissue—engineered skin bioconstructs available for skin reconstruction. J R Soc Interface, 2010, 7(43): 229-258.
2. Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering—in vivo and in vitro applications. Clin Plast Surg, 2012, 39(1): 33-58.
3. 董麗, 王旭昇, 馬紹英, 等. 組織工程皮膚的構(gòu)建及組織形態(tài)學(xué)觀察. 中國(guó)組織工程研究與臨床康復(fù), 2011, 15(41): 7631-7634.
4. 董麗, 周沫, 李寶興, 等. 組織工程皮膚種子細(xì)胞生物學(xué)特性的研究. 西部醫(yī)學(xué), 2009, 21(4): 553-555.
5. 董麗, 馬紹英, 趙亞平, 等. 無(wú)細(xì)胞真皮支架與同種細(xì)胞相容性的動(dòng)態(tài)觀察. 中國(guó)組織工程研究與臨床康復(fù), 2008, 12(27): 5262-5266.
6. 付小兵, 王德文. 創(chuàng)傷修復(fù)基礎(chǔ). 北京: 人民軍醫(yī)出版社, 1997: 184-201.
7. Macri L, Clark RA. Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin Pharmacol Physiol, 2009, 22(2): 83-93.
8. Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol, 2009, 20(5): 563-567.
9. Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns, 2010, 36(4): 450-460.
10. Larouche D, Cuffley K, Paquet C, et al. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting. Tissue Eng Part A, 2011, 17(5-6): 819-830.
11. 李寶興. 同種組織移植于組織庫(kù). 北京: 原子能出版社, 2010: 29-35.
12. Clover AJ, O’Neill BL, Kumar AH. Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen, 2012, 20(3): 311-316.
13. 李瑞生, 陳振文, 歐陽(yáng)兆和. 近交系大鼠DNA指紋圖和微衛(wèi)星DNA多態(tài)性的分析. 實(shí)驗(yàn)動(dòng)物科學(xué)與管理, 2003, 20(z1): 139-141.
14. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol, 2001, 69(4): 513-521.
15. 劉建波, 李薈元. 肌成纖維細(xì)胞在創(chuàng)面愈合及瘢痕形成中的作用. 實(shí)用美容整形外科雜志, 2001, 12(3): 156-157.
16. Xiao SC, Zhu SH, Li HY, et al. Feasibility study of composite skin reconstructed by mixing keratinocytes and acellular dermal matrix for wound repair. Swiss Med Wkly, 2009, 139(1-2): 16-21.
17. Lohmeyer JA, Liu F, Krüger S, et al. Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect. Langenbecks Arch Surg, 2011, 396(4): 543-550.
18. 劉坡, 祁少海, 舒斌, 等. 毛乳頭細(xì)胞促進(jìn)組織工程皮膚血管化的實(shí)驗(yàn)研究. 中國(guó)修復(fù)重建外科雜志, 2012, 26(2): 135-140.
19. Rennekampff HO, Kiessig V, Griffey S, et al. Acellular human dermis promote cultured keratinocytes engraftment. J Burns Care Rehabil, 1997, 18(6): 535-544.
20. Chen RN, Ho HO, Tsai YT, et al. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials, 2004, 25(13): 2679-2686.
21. Livesey AS, Herndon DN, Hollyoak MA, et al. Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation, 1995, 60(1): 1-9.
22. Katz AB, Taichman LB. A partial catalog of proteins secreted by epidermal keratinocytes in culture. J Invest Dermatol, 1999, 112(5): 818-821.
  1. 1. Shevchenko RV, James SL, James SE. A review of tissue—engineered skin bioconstructs available for skin reconstruction. J R Soc Interface, 2010, 7(43): 229-258.
  2. 2. Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering—in vivo and in vitro applications. Clin Plast Surg, 2012, 39(1): 33-58.
  3. 3. 董麗, 王旭昇, 馬紹英, 等. 組織工程皮膚的構(gòu)建及組織形態(tài)學(xué)觀察. 中國(guó)組織工程研究與臨床康復(fù), 2011, 15(41): 7631-7634.
  4. 4. 董麗, 周沫, 李寶興, 等. 組織工程皮膚種子細(xì)胞生物學(xué)特性的研究. 西部醫(yī)學(xué), 2009, 21(4): 553-555.
  5. 5. 董麗, 馬紹英, 趙亞平, 等. 無(wú)細(xì)胞真皮支架與同種細(xì)胞相容性的動(dòng)態(tài)觀察. 中國(guó)組織工程研究與臨床康復(fù), 2008, 12(27): 5262-5266.
  6. 6. 付小兵, 王德文. 創(chuàng)傷修復(fù)基礎(chǔ). 北京: 人民軍醫(yī)出版社, 1997: 184-201.
  7. 7. Macri L, Clark RA. Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin Pharmacol Physiol, 2009, 22(2): 83-93.
  8. 8. Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol, 2009, 20(5): 563-567.
  9. 9. Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns, 2010, 36(4): 450-460.
  10. 10. Larouche D, Cuffley K, Paquet C, et al. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting. Tissue Eng Part A, 2011, 17(5-6): 819-830.
  11. 11. 李寶興. 同種組織移植于組織庫(kù). 北京: 原子能出版社, 2010: 29-35.
  12. 12. Clover AJ, O’Neill BL, Kumar AH. Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen, 2012, 20(3): 311-316.
  13. 13. 李瑞生, 陳振文, 歐陽(yáng)兆和. 近交系大鼠DNA指紋圖和微衛(wèi)星DNA多態(tài)性的分析. 實(shí)驗(yàn)動(dòng)物科學(xué)與管理, 2003, 20(z1): 139-141.
  14. 14. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol, 2001, 69(4): 513-521.
  15. 15. 劉建波, 李薈元. 肌成纖維細(xì)胞在創(chuàng)面愈合及瘢痕形成中的作用. 實(shí)用美容整形外科雜志, 2001, 12(3): 156-157.
  16. 16. Xiao SC, Zhu SH, Li HY, et al. Feasibility study of composite skin reconstructed by mixing keratinocytes and acellular dermal matrix for wound repair. Swiss Med Wkly, 2009, 139(1-2): 16-21.
  17. 17. Lohmeyer JA, Liu F, Krüger S, et al. Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect. Langenbecks Arch Surg, 2011, 396(4): 543-550.
  18. 18. 劉坡, 祁少海, 舒斌, 等. 毛乳頭細(xì)胞促進(jìn)組織工程皮膚血管化的實(shí)驗(yàn)研究. 中國(guó)修復(fù)重建外科雜志, 2012, 26(2): 135-140.
  19. 19. Rennekampff HO, Kiessig V, Griffey S, et al. Acellular human dermis promote cultured keratinocytes engraftment. J Burns Care Rehabil, 1997, 18(6): 535-544.
  20. 20. Chen RN, Ho HO, Tsai YT, et al. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials, 2004, 25(13): 2679-2686.
  21. 21. Livesey AS, Herndon DN, Hollyoak MA, et al. Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation, 1995, 60(1): 1-9.
  22. 22. Katz AB, Taichman LB. A partial catalog of proteins secreted by epidermal keratinocytes in culture. J Invest Dermatol, 1999, 112(5): 818-821.