• 1蘭州軍區(qū)蘭州總醫(yī)院口腔頜面外科(蘭州,730050);;
  • 2 第四軍醫(yī)大學(xué)口腔醫(yī)學(xué)院頜面外科;

目的 綜述細(xì)胞治療策略在促進(jìn)牽張成骨(distraction osteogenesis,DO)方面的研究進(jìn)展。 方法 廣泛查閱近年來國內(nèi)外關(guān)于細(xì)胞治療策略促進(jìn)DO、縮短治療周期的研究文獻(xiàn),對常用方法進(jìn)行分析總結(jié)。 結(jié)果 常用的促進(jìn)骨再生的細(xì)胞治療策略有細(xì)胞注射治療、細(xì)胞-外源性載體支架復(fù)合物/可注射組織工程骨、微組織或多細(xì)胞聚集體技術(shù)、細(xì)胞基因治療,各有優(yōu)缺點(diǎn)。除自體BMSCs與富血小板血漿復(fù)合注射的方法有臨床應(yīng)用報(bào)道外,其他方法仍處于基礎(chǔ)研究階段。 結(jié)論 細(xì)胞治療策略在骨再生、促進(jìn)DO及縮短其治療周期等方面具有廣闊前景,應(yīng)用于臨床前需嚴(yán)謹(jǐn)設(shè)計(jì)臨床前試驗(yàn)來評價(jià)其安全性并規(guī)范應(yīng)用方法。

引用本文: 馬東洋,毛天球. 細(xì)胞治療策略促進(jìn)牽張成骨的研究進(jìn)展. 中國修復(fù)重建外科雜志, 2012, 26(12): 1512-1515. doi: 復(fù)制

1. Sailhan F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int, 2011, 22(6): 2011-2015.
2. Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. J Am Acad Orthop Surg, 2011, 19(2): 101-111.
3. Devine MJ, Mierisch CM, Jang E, et al. Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res, 2002, 20(6): 1232-1239.
4. Granero-Moltó F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 2009, 27(8): 1887-1898.
5. Hamanishi C, Yoshii T, Totani Y, et al. Bone mineral density of lengthened rabbit tibia is enhanced by transplantation of fresh autologous bone marrow cells. An experimental study using dual X-ray absorptiometry. Clin Orthop Relat Res, 1994, (303): 250-255.
6. Hernigou P, Poignard A, Beaujean F, et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg (Am), 2005, 87(7): 1430-1437.
7. Peters A, Toben D, Lienau J, et al. Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing. Tissue Eng Part A, 2009, 15(10): 2947-2954.
8. Takushima A, Kitano Y, Harii K. Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. J Surg Res, 1998, 78(1): 68-77.
9. Qi M, Hu J, Zou S, et al. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg, 2006, 34(5): 283-289.
10. Shao Z, Liu B, Peng Q, et al. Transplantation of osteoblast-like cells to the distracted callus in the rabbit mandible. Plast Reconstr Surg, 2007, 119(2): 500-507.
11. Takamine Y, Tsuchiya H, Kitakoji T, et al. Distraction osteogenesis enhanced by osteoblastlike cells and collagen gel. Clin Orthop Relat Res, 2002, (399): 240-246.
12. Dai W, Hale SL, Kay GL, et al. Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med, 2009, 4(3): 387-395.
13. Kinoshita K, Hibi H, Yamada Y, et al. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg, 2008, 19(1): 80-87.
14. Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone, 2007, 40(2): 522-528.
15. Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials, 2009, 30(28): 4956-4966.
16. Sands JJ, Nudo SA, Ashford RG, et al. Antibodies to topical bovine thrombin correlate with access thrombosis. Am J Kidney Dis, 2000, 35(5): 796-801.
17. Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol, 2009, 5(12): 685-697.
18. Kelm JM, Fussenegger M. Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev, 2010, 62(7-8): 753-764.
19. Kneser U, Stangenberg L, Ohnolz J, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J Cell Mol Med, 2006, 10(3): 695-707.
20. Langenbach F, Naujoks C, Smeets R, et al. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig, 2012. [Epub ahead of print].
21. Ma D, Zhong C, Yao H, et al. Engineering injectable bone using bone marrow stromal cell aggregates. Stem Cell Devel, 2011, 20(6): 989-999.
22. Tseng SS, Lee MA, Reddi AH. Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg (Am), 2008, 90 Suppl 1: 92-98.
23. Hu J, Qi MC, Zou SJ, et al. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res, 2007, 25(2): 241-251.
24. Jiang X, Zou S, Ye B, et al. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone, 2010, 46(4): 1156-1161.
  1. 1. Sailhan F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int, 2011, 22(6): 2011-2015.
  2. 2. Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. J Am Acad Orthop Surg, 2011, 19(2): 101-111.
  3. 3. Devine MJ, Mierisch CM, Jang E, et al. Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res, 2002, 20(6): 1232-1239.
  4. 4. Granero-Moltó F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 2009, 27(8): 1887-1898.
  5. 5. Hamanishi C, Yoshii T, Totani Y, et al. Bone mineral density of lengthened rabbit tibia is enhanced by transplantation of fresh autologous bone marrow cells. An experimental study using dual X-ray absorptiometry. Clin Orthop Relat Res, 1994, (303): 250-255.
  6. 6. Hernigou P, Poignard A, Beaujean F, et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg (Am), 2005, 87(7): 1430-1437.
  7. 7. Peters A, Toben D, Lienau J, et al. Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing. Tissue Eng Part A, 2009, 15(10): 2947-2954.
  8. 8. Takushima A, Kitano Y, Harii K. Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. J Surg Res, 1998, 78(1): 68-77.
  9. 9. Qi M, Hu J, Zou S, et al. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg, 2006, 34(5): 283-289.
  10. 10. Shao Z, Liu B, Peng Q, et al. Transplantation of osteoblast-like cells to the distracted callus in the rabbit mandible. Plast Reconstr Surg, 2007, 119(2): 500-507.
  11. 11. Takamine Y, Tsuchiya H, Kitakoji T, et al. Distraction osteogenesis enhanced by osteoblastlike cells and collagen gel. Clin Orthop Relat Res, 2002, (399): 240-246.
  12. 12. Dai W, Hale SL, Kay GL, et al. Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med, 2009, 4(3): 387-395.
  13. 13. Kinoshita K, Hibi H, Yamada Y, et al. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg, 2008, 19(1): 80-87.
  14. 14. Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone, 2007, 40(2): 522-528.
  15. 15. Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials, 2009, 30(28): 4956-4966.
  16. 16. Sands JJ, Nudo SA, Ashford RG, et al. Antibodies to topical bovine thrombin correlate with access thrombosis. Am J Kidney Dis, 2000, 35(5): 796-801.
  17. 17. Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol, 2009, 5(12): 685-697.
  18. 18. Kelm JM, Fussenegger M. Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev, 2010, 62(7-8): 753-764.
  19. 19. Kneser U, Stangenberg L, Ohnolz J, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J Cell Mol Med, 2006, 10(3): 695-707.
  20. 20. Langenbach F, Naujoks C, Smeets R, et al. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig, 2012. [Epub ahead of print].
  21. 21. Ma D, Zhong C, Yao H, et al. Engineering injectable bone using bone marrow stromal cell aggregates. Stem Cell Devel, 2011, 20(6): 989-999.
  22. 22. Tseng SS, Lee MA, Reddi AH. Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg (Am), 2008, 90 Suppl 1: 92-98.
  23. 23. Hu J, Qi MC, Zou SJ, et al. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res, 2007, 25(2): 241-251.
  24. 24. Jiang X, Zou S, Ye B, et al. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone, 2010, 46(4): 1156-1161.