• 第三軍醫(yī)大學附屬西南醫(yī)院(重慶,400038) 1 關節(jié)外科中心,2 眼科;

目的 建立保留鈣化層結構的豬股骨滑車全厚軟骨缺損模型,為觀察組織工程軟骨在保留鈣化層
的膝關節(jié)軟骨缺損模型中的修復效果提供良好的實驗研究平臺。 方法 選取6 月齡清潔級貴州小香豬9 只,體重
40 ~ 50 kg,用標準的軟骨缺損制作套件在其右后肢股骨滑車切跡旁制備直徑6 mm、深0.2 ~ 0.5 mm、不傷及鈣化層結構
的圓柱形全厚軟骨缺損模型。造模4 周后行3.0T MRI 觀察,取材后進行大體、體視顯微鏡觀察及固綠- 番紅O、阿利新藍、
天狼星紅組織學染色觀察缺損處軟骨修復情況。 結果 造模后實驗動物均存活,術后切口無感染,無髕骨脫位;術后即
可下地行走并部分負重,1 周后均能自由活動,無跛行。造模后4 周,MRI 檢查可見滑車處有明顯連續(xù)信號中斷,異常信
號深及軟骨下骨,缺損周邊深層未見明顯信號異常。標本大體觀察示缺損底部有少量填充物、出血點,與周圍正常軟骨界
限清楚。體式顯微鏡觀察示鈣化層基本完整,缺損局部軟骨下骨板有塌陷。普通顯微鏡下,固綠- 番紅O 及阿利新藍染
色示缺損處無軟骨細胞及染料著色;偏光顯微鏡下,天狼星紅染色示缺損底部被連續(xù)、強折光性的纖維組織少量填充。
結論 通過該造模方法制作的不傷及鈣化層結構的豬股骨滑車全厚軟骨缺損模型,可用于骨關節(jié)炎早期軟骨病變修復的
研究及豬軟骨鈣化層結構作用研究的動物模型。

引用本文: 寧志剛 ,楊柳,王富友,張一,王恩洪. 保留鈣化層結構的豬股骨滑車全厚軟骨缺損模型建立. 中國修復重建外科雜志, 2012, 26(5): 527-531. doi: 復制

1. Yokota M, Yasuda K, Kitamura N, et al. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskelet Disord, 2011, 12: 49.
2. 代嶺輝, 杜寧. 關節(jié)軟骨損傷生物學修復的研究進展. 中國骨傷, 2009, 22(9): 721-724.
3. Coburn J, Gibson M, Bandalini PA, et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst, 2011, 7(3): 213-222.
4. Getgood A, Brooks R, Fortier L, et al. Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg (Br), 2009, 91(5): 565-576.
5. Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. Biofabrication, 2011, 3(1): 5087-5092.
6. Chu CR, Szczodyy M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev, 2010, 16(1): 105-115.
7. 何志偉, 趙建寧, 岳鵬舉, 等. 可注射型及柱型藻酸鈣載體聯合運用修復兔膝關節(jié)軟骨缺損的效果觀察. 中國骨傷, 2008, 21(12): 899-902.
8. Jiang Y, Chen LK, Zhu DC, et al. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A Rev, 2010, 16(5): 1621-1632.
9. Simon TM, Aberman HM. Cartilage regeneration and repair testing in a surrogate large animal model. Tissue Eng Part B Rev, 2010, 16(1): 65-79.
10. Jung M, Kaszap B, Redöhl A, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant, 2009, 18(8): 923-932.
11. Muehleman C, Li J, Abe Y, et al. Effect of risedronate in a minipig cartilage defect model with allograft. J Orthop Res, 2009, 27(3): 360-365.
12. Nixon AJ, Bequm L, Mohammed HO, et al. Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res, 2011, 29(7): 1121-1130.
13. 王富友, 楊柳, 段小軍, 等. 正常膝關節(jié)軟骨鈣化層形態(tài)結構研究. 中國修復重建外科雜志, 2008, 22(5): 524-527.
14. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 419-433.
15. Wang F, Ying Z, Duan X, et al. Histomorphometric analysis of adult articular calcified cartilage zone. J Struct Biol, 2009, 168(3): 359-365.
16. Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage, 2004, 12 Suppl A: S20-30.
17. Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and rengeneration. Tissue Eng Part B Rev, 2010, 16(6): 617-627.
18. 馬立恒, 劉斯?jié)? 關節(jié)軟骨的結構與生物力學的關系及MR成像. 國外醫(yī)學: 臨床放射學分冊, 2006, 29(2): 123-126.
19. Che JH, Zhang ZR, Li GZ, et al. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg Sports Traumatol Arthrosc, 2009, 18(4): 496-503.
20. Ahem BJ, Parvizi J, Boston R, et al. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage, 2009, 17(6): 705-713.
21. Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am, 2011, 19(2): 249-282.
22. Cerema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics, 2011, 31(1): 37-61.
  1. 1. Yokota M, Yasuda K, Kitamura N, et al. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskelet Disord, 2011, 12: 49.
  2. 2. 代嶺輝, 杜寧. 關節(jié)軟骨損傷生物學修復的研究進展. 中國骨傷, 2009, 22(9): 721-724.
  3. 3. Coburn J, Gibson M, Bandalini PA, et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst, 2011, 7(3): 213-222.
  4. 4. Getgood A, Brooks R, Fortier L, et al. Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg (Br), 2009, 91(5): 565-576.
  5. 5. Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. Biofabrication, 2011, 3(1): 5087-5092.
  6. 6. Chu CR, Szczodyy M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev, 2010, 16(1): 105-115.
  7. 7. 何志偉, 趙建寧, 岳鵬舉, 等. 可注射型及柱型藻酸鈣載體聯合運用修復兔膝關節(jié)軟骨缺損的效果觀察. 中國骨傷, 2008, 21(12): 899-902.
  8. 8. Jiang Y, Chen LK, Zhu DC, et al. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A Rev, 2010, 16(5): 1621-1632.
  9. 9. Simon TM, Aberman HM. Cartilage regeneration and repair testing in a surrogate large animal model. Tissue Eng Part B Rev, 2010, 16(1): 65-79.
  10. 10. Jung M, Kaszap B, Redöhl A, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant, 2009, 18(8): 923-932.
  11. 11. Muehleman C, Li J, Abe Y, et al. Effect of risedronate in a minipig cartilage defect model with allograft. J Orthop Res, 2009, 27(3): 360-365.
  12. 12. Nixon AJ, Bequm L, Mohammed HO, et al. Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res, 2011, 29(7): 1121-1130.
  13. 13. 王富友, 楊柳, 段小軍, 等. 正常膝關節(jié)軟骨鈣化層形態(tài)結構研究. 中國修復重建外科雜志, 2008, 22(5): 524-527.
  14. 14. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 419-433.
  15. 15. Wang F, Ying Z, Duan X, et al. Histomorphometric analysis of adult articular calcified cartilage zone. J Struct Biol, 2009, 168(3): 359-365.
  16. 16. Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage, 2004, 12 Suppl A: S20-30.
  17. 17. Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and rengeneration. Tissue Eng Part B Rev, 2010, 16(6): 617-627.
  18. 18. 馬立恒, 劉斯?jié)? 關節(jié)軟骨的結構與生物力學的關系及MR成像. 國外醫(yī)學: 臨床放射學分冊, 2006, 29(2): 123-126.
  19. 19. Che JH, Zhang ZR, Li GZ, et al. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg Sports Traumatol Arthrosc, 2009, 18(4): 496-503.
  20. 20. Ahem BJ, Parvizi J, Boston R, et al. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage, 2009, 17(6): 705-713.
  21. 21. Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am, 2011, 19(2): 249-282.
  22. 22. Cerema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics, 2011, 31(1): 37-61.