• 1中山大學(xué)附屬第一醫(yī)院骨科-顯微外科醫(yī)學(xué)部(廣州,510080);;
  • 2 梅州市人民醫(yī)院骨科;;
  • 3 廣州醫(yī)學(xué)院第四附屬醫(yī)院骨科;;
  • 4 華南理工大學(xué)生物材料研究所;

目的 探討含聚乳酸-羥基乙酸共聚物(poly lactic-co-glycolic acid,PLGA)的新型磷酸鈣骨水泥(calcium phosphate cement,CPC)(CPC/PLGA)體內(nèi)降解性能,為臨床試驗(yàn)奠定基礎(chǔ)。 方法按照45%磷酸氫鈣、45%部分結(jié)晶磷酸鈣、10% PLGA比例,制備CPC/PLGA。健康成年新西蘭兔32只,體重2.2~3.0 kg,雌雄各半;隨機(jī)分為CPC/PLGA組(實(shí)驗(yàn)組,n=17)及CPC組(對照組,n=15)。兩組實(shí)驗(yàn)動(dòng)物制備雙側(cè)股骨內(nèi)側(cè)髁直徑4.5 mm、深1.5 cm骨缺損模型,右側(cè)骨缺損分別采用CPC/PLGA及CPC修復(fù),左側(cè)不作處理作為空白對照。術(shù)后觀察實(shí)驗(yàn)動(dòng)物一般情況,術(shù)后2、4、8、16、24周兩組取材行組織學(xué)觀察、骨形態(tài)計(jì)量學(xué)分析,術(shù)后8周及16周實(shí)驗(yàn)組取材行掃描電鏡觀察。 結(jié)果實(shí)驗(yàn)動(dòng)物均存活至實(shí)驗(yàn)結(jié)束。組織學(xué)觀察顯示,隨時(shí)間延長,實(shí)驗(yàn)組CPC/PLGA逐漸降解,并有新生骨小梁從邊緣長入其中,并且增粗、增長,24周時(shí)材料基本降解,被新生骨小梁取代;對照組CPC降解明顯較實(shí)驗(yàn)組延遲。實(shí)驗(yàn)組術(shù)后總骨組織含量百分比為44.9% ± 23.7%,顯著高于對照組的25.7% ± 10.9%(t=3.302,P=0.001);實(shí)驗(yàn)組術(shù)后4周骨組織含量百分比與對照組比較,差異無統(tǒng)計(jì)學(xué)意義(P  gt; 0.05),8、16、24周均顯著高于對照組,差異有統(tǒng)計(jì)學(xué)意義(P  lt; 0.05)。掃描電鏡觀察結(jié)果顯示,實(shí)驗(yàn)組術(shù)后8周CPC/PLGA降解后形成孔徑為100~300 μm孔隙;隨著時(shí)間延長,16周時(shí)新生骨小梁長入孔隙內(nèi),并與殘余骨水泥牢固結(jié)合。 結(jié)論CPC/PLGA植入兔體內(nèi)后具有良好的降解性能,有望成為一種良好骨移植材料。

引用本文: 廖紅興,段昕,張紫機(jī),鄒華章,葉建東,廖威明. 含聚乳酸-羥基乙酸共聚物的新型磷酸鈣骨水泥體內(nèi)降解性能研究. 中國修復(fù)重建外科雜志, 2012, 26(8): 934-938. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Hench LL, Wilson J. An introduction to bioceramics. New Jersey: World Scientific Publishing Co Pte Ltd, 1993: 1-24.
2. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999, 20(23-24): 2287-2303.
3. Xu HH, Burgueral EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials, 2007, 28(26): 3786-3796.
4. Kruyt MC, Persson C, Johansson G, et al. Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing. Tissue Eng, 2006, 12(2): 309-317.
5. Van Lieshout EM, Van Kralingen GH, El-Massoudi Y, et al. Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet Disord, 2011, 12: 34.
6. Wang X, Ye J, Wang Y, et al. Hydration mechanism of a novel PCCP + DCPA cement system. J Mater Sci Mater Med, 2008, 19(2): 813-816.
7. Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly (lactide-co-glycolide)microspheres. Acta Biomater, 2008, 4(6): 1837-1845.
8. Hollinger JO, Kleinechmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990, 1(1): 60-68.
9. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
10. Fernández E, Vald MD, Gel MM, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials, 2005, 26(17): 3395-3404.
11. Fernández E, Sarda S, Hamcerencu M, et al. High-strength apatitic cement by modification with superplasticizers. Biomaterials, 2005, 26(15): 2289-2296.
12. Manjubala I, Sivakumar M, Sureshkumar RV, et al. Bioactive and osseointegration study of calcium phosphate ceramic of different chemical composition. J Biomed Mater Res, 2002, 63(2): 200-208.
13. Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials, 2004, 25(7-8): 1439-1451.
14. BohnerM, Theiss F, Apelt D, et al. Compositional changes of adicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials, 2003, 24(20): 3463-3474.
15. Ruhé PQ, Hedberg EL, Padron NT, et al. Biocompatibility and degradation of poly (DL-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A, 2005, 74(4): 533-544.
16. Simon CG Jr, Khatri CA, Wight SA, et al. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly (lactide-co-glycolide)microspheres. J Orthop Res, 2002, 20(3): 473-482.
17. 鄒華章, 廖威明, 段昕, 等. 新型可注射磷酸鈣骨水泥在椎體后凸成形術(shù)中的生物力學(xué)評價(jià). 中華生物醫(yī)學(xué)工程雜志, 2011, 17(2): 151-155.
18. Flautre B, Delecourt C, Blary MC, et al. Volume effect on biological properties of a calcium phosphate hydraulic cement: Experimental study in sheep. Bone, 1999, 25(2 Suppl): 35s-39s.
19. 李朵, 魏啟幼, 范松青, 等. 不脫鈣骨組織包埋技術(shù)的改進(jìn). 臨床與實(shí)驗(yàn)病理學(xué)雜志, 2005, 21(6): 731-733.
20. LeGeros RZ, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med, 2003, 14(3): 201-209.
21. Flautre B, Descamps M, Delecourt C, et al. Pores HA ceramic for bone replacement: role of the pores and interconnections—experimental study in rabbit. J Mater Sci Mater Med, 2001, 12(8): 679-682.
  1. 1. Hench LL, Wilson J. An introduction to bioceramics. New Jersey: World Scientific Publishing Co Pte Ltd, 1993: 1-24.
  2. 2. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999, 20(23-24): 2287-2303.
  3. 3. Xu HH, Burgueral EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials, 2007, 28(26): 3786-3796.
  4. 4. Kruyt MC, Persson C, Johansson G, et al. Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing. Tissue Eng, 2006, 12(2): 309-317.
  5. 5. Van Lieshout EM, Van Kralingen GH, El-Massoudi Y, et al. Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet Disord, 2011, 12: 34.
  6. 6. Wang X, Ye J, Wang Y, et al. Hydration mechanism of a novel PCCP + DCPA cement system. J Mater Sci Mater Med, 2008, 19(2): 813-816.
  7. 7. Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly (lactide-co-glycolide)microspheres. Acta Biomater, 2008, 4(6): 1837-1845.
  8. 8. Hollinger JO, Kleinechmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990, 1(1): 60-68.
  9. 9. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
  10. 10. Fernández E, Vald MD, Gel MM, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials, 2005, 26(17): 3395-3404.
  11. 11. Fernández E, Sarda S, Hamcerencu M, et al. High-strength apatitic cement by modification with superplasticizers. Biomaterials, 2005, 26(15): 2289-2296.
  12. 12. Manjubala I, Sivakumar M, Sureshkumar RV, et al. Bioactive and osseointegration study of calcium phosphate ceramic of different chemical composition. J Biomed Mater Res, 2002, 63(2): 200-208.
  13. 13. Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials, 2004, 25(7-8): 1439-1451.
  14. 14. BohnerM, Theiss F, Apelt D, et al. Compositional changes of adicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials, 2003, 24(20): 3463-3474.
  15. 15. Ruhé PQ, Hedberg EL, Padron NT, et al. Biocompatibility and degradation of poly (DL-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A, 2005, 74(4): 533-544.
  16. 16. Simon CG Jr, Khatri CA, Wight SA, et al. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly (lactide-co-glycolide)microspheres. J Orthop Res, 2002, 20(3): 473-482.
  17. 17. 鄒華章, 廖威明, 段昕, 等. 新型可注射磷酸鈣骨水泥在椎體后凸成形術(shù)中的生物力學(xué)評價(jià). 中華生物醫(yī)學(xué)工程雜志, 2011, 17(2): 151-155.
  18. 18. Flautre B, Delecourt C, Blary MC, et al. Volume effect on biological properties of a calcium phosphate hydraulic cement: Experimental study in sheep. Bone, 1999, 25(2 Suppl): 35s-39s.
  19. 19. 李朵, 魏啟幼, 范松青, 等. 不脫鈣骨組織包埋技術(shù)的改進(jìn). 臨床與實(shí)驗(yàn)病理學(xué)雜志, 2005, 21(6): 731-733.
  20. 20. LeGeros RZ, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med, 2003, 14(3): 201-209.
  21. 21. Flautre B, Descamps M, Delecourt C, et al. Pores HA ceramic for bone replacement: role of the pores and interconnections—experimental study in rabbit. J Mater Sci Mater Med, 2001, 12(8): 679-682.