• 1四川大學華西醫(yī)院麻醉科(成都,610041);2青島市人民醫(yī)院麻醉科;

目的  探討在Sprague-Dawley大鼠右心房注射緩激肽對呼吸的影響。 方法  7~9 d和21~23 d大鼠在迷走神經(jīng)完整和迷走神經(jīng)切斷的情況下從右心房注射緩激肽,觀察呼吸指標的變化。 結果  ① 右心房注射緩激肽后,7~9 d大鼠出現(xiàn)呼吸暫停,而在21~23 d大鼠僅出現(xiàn)呼吸抑制(P<0.05);② 切斷迷走神經(jīng)后,右心房注射緩激肽在兩組大鼠均不再出現(xiàn)呼吸暫停。 結論  右心房注射緩激肽在7~9 d大鼠產(chǎn)生呼吸暫停,且依賴于迷走神經(jīng)的完整性。

引用本文: 張翔,孫明潔,基鵬,劉斌,王儒蓉. 右心房注射緩激肽對未成年大鼠呼吸的影響. 華西醫(yī)學, 2012, 27(4): 549-551. doi: 復制

1.  Dray A, Perkins M. Bradykinin and inflammatory pain[J]. Trends Neurosci, 1993, 16(3): 99-104.
2.  Martin RJ, Abu-Shaweesh JM. Control of breathing and neonatal apnea[J]. Biol Neonate, 2005, 87(4): 288-295.
3.  Jammes Y, Fornaris E, Mei N, et al. Afferent and efferent components of the bronchial vagal branches in Cats[J]. J Auton Nerv Syst, 1982, 5(2): 165-176.
4.  Undem BJ, Carr MJ. Pharmacology of airway afferent nerve activity[J]. Respir Res, 2001, 2(4): 234-244.
5.  Soukhova G, Wang Y, Ahmed M, et al. Bradykinin stimulates respiratory drive by activating pulmonary sympathetic afferents in the rabbit[J]. J Appl Physiol, 2003, 95(1): 241-249.
6.  Kollarik M, Undem BJ. Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice[J]. J Physiol, 2004, 555(pt 1): 115-123.
7.  Wang R, Xu F. Postnatal development of right atrial injection of capsaicin-induced apneic response in rats[J]. J Appl Physiol, 2006, 101(1): 60-67.
8.  Lee LY, Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers[J]. Respir Physiol, 2001, 125(1-2): 47-65.
9.  Hasan SU, Sarnat HB, Auer RN. Vagal nerve maturation in the fetal lamb: an ultrastructural and morphometric study[J]. Anat Rec, 1993, 237(4): 527-537.
10.  Nurmi L, Heikkilä HM, Vapaatalo H, et al. Downregulation of Bradykinin type 2 receptor expression in cardiac endothelial cells during senescence[J]. J Vasc Res, 2012, 49(1): 13-23.
11.  Klintschar M, Heimbold C. Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome[J]. Pediatrics, 2012, 129(3): e756-e761.
  1. 1.  Dray A, Perkins M. Bradykinin and inflammatory pain[J]. Trends Neurosci, 1993, 16(3): 99-104.
  2. 2.  Martin RJ, Abu-Shaweesh JM. Control of breathing and neonatal apnea[J]. Biol Neonate, 2005, 87(4): 288-295.
  3. 3.  Jammes Y, Fornaris E, Mei N, et al. Afferent and efferent components of the bronchial vagal branches in Cats[J]. J Auton Nerv Syst, 1982, 5(2): 165-176.
  4. 4.  Undem BJ, Carr MJ. Pharmacology of airway afferent nerve activity[J]. Respir Res, 2001, 2(4): 234-244.
  5. 5.  Soukhova G, Wang Y, Ahmed M, et al. Bradykinin stimulates respiratory drive by activating pulmonary sympathetic afferents in the rabbit[J]. J Appl Physiol, 2003, 95(1): 241-249.
  6. 6.  Kollarik M, Undem BJ. Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice[J]. J Physiol, 2004, 555(pt 1): 115-123.
  7. 7.  Wang R, Xu F. Postnatal development of right atrial injection of capsaicin-induced apneic response in rats[J]. J Appl Physiol, 2006, 101(1): 60-67.
  8. 8.  Lee LY, Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers[J]. Respir Physiol, 2001, 125(1-2): 47-65.
  9. 9.  Hasan SU, Sarnat HB, Auer RN. Vagal nerve maturation in the fetal lamb: an ultrastructural and morphometric study[J]. Anat Rec, 1993, 237(4): 527-537.
  10. 10.  Nurmi L, Heikkilä HM, Vapaatalo H, et al. Downregulation of Bradykinin type 2 receptor expression in cardiac endothelial cells during senescence[J]. J Vasc Res, 2012, 49(1): 13-23.
  11. 11.  Klintschar M, Heimbold C. Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome[J]. Pediatrics, 2012, 129(3): e756-e761.