• 1 襄樊學院醫(yī)學院/附屬醫(yī)院臨床檢驗部(湖北襄樊,441053);2 武漢大學人民醫(yī)院眼科;

【摘要】  輔助性T細胞17(T-helper type 17,Th17)是一種以分泌白介素-17(IL-17)為特征的輔助性T淋巴細胞亞型,在自身免疫性疾病中的作用逐漸得到重視。葡萄膜炎是最常見的致盲眼病,一直是眼科研究的熱點和難點。實驗性自身免疫性葡萄膜炎(experimental autoimmune uveoretinitis, EAU)是葡萄膜炎研究的成熟動物模型,有關(guān)Th17和EAU關(guān)系的研究處于起步階段,現(xiàn)就這方面的研究現(xiàn)狀進行綜述,為葡萄膜炎的免疫機制研究提供新思路。

引用本文: 龔文容,陳震,邢怡橋. 輔助性T細胞17和實驗性自身免疫性葡萄膜炎. 華西醫(yī)學, 2011, 26(2): 301-304. doi: 復制

1.  Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357.
2.  Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748.
3.  Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240.
4.  Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141.
5.  Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238.
6.  Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007, 448(7152): 484-487.
7.  Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells[J]. Nature, 2008, 454(7202): 350-352.
8.  Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest, 2006, 116(5): 1310-1316.
9.  Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.
10.  Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem, 2003, 278(3): 1910-1914.
11.  Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J]. Semin Immunol, 2007, 19(6): 400-408.
12.  Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
13.  Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem, 2007, 282(48): 34605-34610.
14.  Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17[J]. Arthritis Rheum, 2008, 58(1): 98-108.
15.  Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234.
16.  Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240.
17.  Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029.
18.  Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol, 2006, 7(9): 929-936.
19.  McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12): 1390-1397.
20.  Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79.
21.  Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature, 2007, 445(7128): 648-651.
22.  Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis[J]. Int Rev Immunol, 2002, 21(2-3): 197-208.
23.  Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[J]. Nat Med, 2007, 13(6): 711-718.
24.  Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. J Exp Med, 2008, 205(4): 799-810.
25.  Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1): 122-127.
26.  Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology (Oxford), 2009, 48(4): 347-354.
27.  Brereton CF, Sutton CE, Lalor SJ, et al. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease[J]. J Immunol, 2009, 183(3): 1715-1723.
28.  Liu X, Lee YS, Yu CR, et al. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases[J]. J Immunol, 2008, 180(9): 6070-6076.
29.  Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest, 2009, 119(1): 61-69.
30.  Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology(Oxford), 2009, 48(4): 347-354.
31.  Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses[J]. Exp Eye Res, 2010, 91(2): 162-170.
32.  Bain DL, Heneghan AF, Connaghan-Jones KD, et al. Nuclear receptor structure: implications for function[J]. Annu Rev Physiol, 2007, 69: 201-220.
33.  Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science (NY), 2007, 317(5835): 256-260.
34.  Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007, 204(8): 1775-1785.
35.  Lathrop SK, Santacruz NA, Pham D, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population[J]. J Exp Med, 2008, 205(13): 3105-3117.
36.  Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204(8): 1757-1764.
37.  Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway[J]. Blood, 2008, 111(3): 1013-1020.
38.  Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation[J]. Eur J Immuol, 2007, 37(9): 2396-2399.
39.  Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol, 2008, 181(4): 2277-2284.
40.  Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis[J]. Br J Ophthalmol, 2010, 94(6): 802-807.
  1. 1.  Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357.
  2. 2.  Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748.
  3. 3.  Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240.
  4. 4.  Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141.
  5. 5.  Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238.
  6. 6.  Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007, 448(7152): 484-487.
  7. 7.  Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells[J]. Nature, 2008, 454(7202): 350-352.
  8. 8.  Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest, 2006, 116(5): 1310-1316.
  9. 9.  Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.
  10. 10.  Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem, 2003, 278(3): 1910-1914.
  11. 11.  Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J]. Semin Immunol, 2007, 19(6): 400-408.
  12. 12.  Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
  13. 13.  Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem, 2007, 282(48): 34605-34610.
  14. 14.  Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17[J]. Arthritis Rheum, 2008, 58(1): 98-108.
  15. 15.  Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234.
  16. 16.  Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240.
  17. 17.  Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029.
  18. 18.  Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol, 2006, 7(9): 929-936.
  19. 19.  McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12): 1390-1397.
  20. 20.  Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79.
  21. 21.  Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature, 2007, 445(7128): 648-651.
  22. 22.  Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis[J]. Int Rev Immunol, 2002, 21(2-3): 197-208.
  23. 23.  Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[J]. Nat Med, 2007, 13(6): 711-718.
  24. 24.  Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. J Exp Med, 2008, 205(4): 799-810.
  25. 25.  Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1): 122-127.
  26. 26.  Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology (Oxford), 2009, 48(4): 347-354.
  27. 27.  Brereton CF, Sutton CE, Lalor SJ, et al. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease[J]. J Immunol, 2009, 183(3): 1715-1723.
  28. 28.  Liu X, Lee YS, Yu CR, et al. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases[J]. J Immunol, 2008, 180(9): 6070-6076.
  29. 29.  Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest, 2009, 119(1): 61-69.
  30. 30.  Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology(Oxford), 2009, 48(4): 347-354.
  31. 31.  Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses[J]. Exp Eye Res, 2010, 91(2): 162-170.
  32. 32.  Bain DL, Heneghan AF, Connaghan-Jones KD, et al. Nuclear receptor structure: implications for function[J]. Annu Rev Physiol, 2007, 69: 201-220.
  33. 33.  Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science (NY), 2007, 317(5835): 256-260.
  34. 34.  Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007, 204(8): 1775-1785.
  35. 35.  Lathrop SK, Santacruz NA, Pham D, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population[J]. J Exp Med, 2008, 205(13): 3105-3117.
  36. 36.  Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204(8): 1757-1764.
  37. 37.  Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway[J]. Blood, 2008, 111(3): 1013-1020.
  38. 38.  Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation[J]. Eur J Immuol, 2007, 37(9): 2396-2399.
  39. 39.  Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol, 2008, 181(4): 2277-2284.
  40. 40.  Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis[J]. Br J Ophthalmol, 2010, 94(6): 802-807.