董瓊 1 , 鄧安彥 1 , 王波 1 , 陳紹平 2 , 蒲青 1 , 陳艷 1
  • 1 川北醫(yī)學(xué)院第二臨床學(xué)院 南充市中心醫(yī)院(四川南充,637000);2 川北醫(yī)學(xué)院附屬醫(yī)院;

【摘要】 目的  觀察機(jī)械通氣對(duì)黏蛋白(mucin,MUC)-5AC表達(dá)的影響及復(fù)方川貝精片的干預(yù)作用。 方法  新西蘭兔25只,6個(gè)月齡,雄性;隨機(jī)分為對(duì)照組、機(jī)械通氣12 h組及復(fù)方川貝精片低、中、高劑量組。收集支氣管灌洗液,分別采用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)法和酶聯(lián)免疫吸附試驗(yàn)檢測(cè)支氣管灌洗液中p38 MAPK mRNA,MUC-5AC蛋白和mRNA的表達(dá)。 結(jié)果  機(jī)械通氣能增強(qiáng)MUC-5AC的分泌(P lt;0.05);加用復(fù)方川貝精片能降低機(jī)械通氣后MUC-5AC蛋白和mRNA的表達(dá)(P lt;0.05);復(fù)方川貝精片中、高劑量組與低劑量組比較,能降低機(jī)械通氣后MUC-5AC蛋白和mRNA的表達(dá)(P lt;0.05)。 結(jié)論  機(jī)械通氣能促進(jìn)支氣管黏膜上皮細(xì)胞分泌MUC-5AC,復(fù)方川貝精片能抑制機(jī)械通氣所致MUC-5AC表達(dá)升高,其機(jī)制可能與其抑制p38 MAPK表達(dá)有關(guān)。
【Abstract】 Objective  To observe the effect of mechanical ventilation by breathing machine on the expression of mucin (MUC-5AC) and the interfering effect of compound tablet of fritillary bulb. Methods  New Zealand Rabbits were randomly divided into control group, twelve-hour mechanical ventilation group, and low, medium and high-dose compound tablet of fritillary bulb group. Contents of p38 MAPK mRNA, MUC-5AC mRNA and protein in bronchial irrigating solution were detected by realtime RT-PCR and ELISA methods. Results  Mechanical ventilation could increase the expression of MUC-5AC in bronchial irrigating solution (P lt;0.05). Compound tablet of fritillary bulb could decrease the expression of MUC-5AC mRNA and protein after mechanical ventilation (P lt;0.05). Compared with low-dose compound tablet of fritillary bulb group, the expression of MUC-5AC mRNA and protein was lower for the high and medium-dose groups (P lt;0.05). Conclusions  Mechanical ventilation can promote the expression of MUC-5AC in bronchial endothelial cells, which can be suppressed by compound tablet of fritillary bulb. This may be due to the suppression effect of p38 MAPK expression.

引用本文: 董瓊,鄧安彥,王波,陳紹平,蒲青,陳艷. 機(jī)械通氣對(duì)黏蛋白-5AC表達(dá)的影響及復(fù)方川貝精片的干預(yù)作用. 華西醫(yī)學(xué), 2011, 26(6): 871-873. doi: 復(fù)制

1.  Unoki T, Kawasaki Y, Mizutani T, et al. Effects of expiratory rib-cage compression on oxygenation, ventilation, and airway-secretion removal in patients receiving mechanical ventilation[J]. Respir Care, 2005, 50(11): 1430-1437.
2.  O’Reilly M, Hooper SB, Allison BJ, et al. Persistent bronchiolar remodeling following brief ventilation of the very immature ovine lung[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(5): 992-1001.
3.  Durbin CG Jr, Perkins MP. Should tracheostomy be performed as early as 72 hours in patients requiring prolonged mechanical ventilation [J]. Respir Care, 2010, 55(1): 76-87.
4.  EI Ferzli GT, Philips JB 3rd, Bulger A, et al. A pumpless lung assist device reduces mechanical ventilation-induced lung injury in juvenile piglets[J]. Pediatr Res, 2009, 66(6): 671-676.
5.  毛翎, 白春學(xué), 張敏, 等. 表皮生長(zhǎng)因子受體和黏蛋白在慢性阻塞性肺疾病氣道中的表達(dá)及意義[J]. 中華結(jié)核和呼吸雜志, 2004, 27(9): 585-588.
6.  陳智鴻, 祝蓉, 白莉, 等. 小發(fā)卡狀RNA介導(dǎo)的人呼吸道黏膜下腺細(xì)胞對(duì)水通道蛋白5的抑制及其對(duì)MUC-5AC表達(dá)的影響[J]. 中華結(jié)核和呼吸雜志, 2006, 29(2): 128-129.
7.  Diaz JV, Brower R, Calfee CS, et al. Therapeutic strategies for severe acute lung injury[J]. Crit Care Med, 2010, 38(8): 1644-1650.
8.  Vlaar AP, Wolthuis EK, Hofstra JJ, et al. Mechanical ventilation aggravates transfusion-related acute lung injury induced by MHC-I class antibodies[J]. Intensive Care Med, 2010, 36(5): 879-887.
9.  Komatsu K, Jono H, Lim JH, et al. Glucocorticoids inhibit nontypeable Haemophilus influenzae-induced MUC-5AC mucin expression via MAPK phosphatase-1-dependent inhibition of p38 MAPK[J]. Biochem Biophys Res Commun, 2008, 377(3): 763-768.
10.  Lim JH, Kim HJ, Komatsu K, et al. Differential regulation of Streptococcus pneumoniae induced human MUC-5AC mucin expression through distinct MAPK pathways[J]. Am J Transl Res, 2009, 1(3): 300-311.
11.  Iyoda M, Shibata T, Kawaguchi M, et al. IL-17A and IL-17F stimulate chemokines via MAPK pathways (ERK1/2 and p38 but not JNK) in mouse cultured mesangial cells: synergy with TNF-alpha and IL-1beta[J]. Am J Physiol Renal Physiol, 2010, 298(3): F779-787.
12.  Matsui T, Svensson CI, Hirata Y, et al. Release of prostaglandin E2 and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase[J]. Anesth Analg, 2010, 111(2): 554-60.
13.  Jin JO, Song MG, Kim YN, et al. The mechanism of fucoidan-induced apoptosis in leukemic cells: involvement of ERK1/2, JNK, glutathione, and nitric oxide[J]. Mol Carcinog, 2010, 49(8): 771-782.
  1. 1.  Unoki T, Kawasaki Y, Mizutani T, et al. Effects of expiratory rib-cage compression on oxygenation, ventilation, and airway-secretion removal in patients receiving mechanical ventilation[J]. Respir Care, 2005, 50(11): 1430-1437.
  2. 2.  O’Reilly M, Hooper SB, Allison BJ, et al. Persistent bronchiolar remodeling following brief ventilation of the very immature ovine lung[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(5): 992-1001.
  3. 3.  Durbin CG Jr, Perkins MP. Should tracheostomy be performed as early as 72 hours in patients requiring prolonged mechanical ventilation [J]. Respir Care, 2010, 55(1): 76-87.
  4. 4.  EI Ferzli GT, Philips JB 3rd, Bulger A, et al. A pumpless lung assist device reduces mechanical ventilation-induced lung injury in juvenile piglets[J]. Pediatr Res, 2009, 66(6): 671-676.
  5. 5.  毛翎, 白春學(xué), 張敏, 等. 表皮生長(zhǎng)因子受體和黏蛋白在慢性阻塞性肺疾病氣道中的表達(dá)及意義[J]. 中華結(jié)核和呼吸雜志, 2004, 27(9): 585-588.
  6. 6.  陳智鴻, 祝蓉, 白莉, 等. 小發(fā)卡狀RNA介導(dǎo)的人呼吸道黏膜下腺細(xì)胞對(duì)水通道蛋白5的抑制及其對(duì)MUC-5AC表達(dá)的影響[J]. 中華結(jié)核和呼吸雜志, 2006, 29(2): 128-129.
  7. 7.  Diaz JV, Brower R, Calfee CS, et al. Therapeutic strategies for severe acute lung injury[J]. Crit Care Med, 2010, 38(8): 1644-1650.
  8. 8.  Vlaar AP, Wolthuis EK, Hofstra JJ, et al. Mechanical ventilation aggravates transfusion-related acute lung injury induced by MHC-I class antibodies[J]. Intensive Care Med, 2010, 36(5): 879-887.
  9. 9.  Komatsu K, Jono H, Lim JH, et al. Glucocorticoids inhibit nontypeable Haemophilus influenzae-induced MUC-5AC mucin expression via MAPK phosphatase-1-dependent inhibition of p38 MAPK[J]. Biochem Biophys Res Commun, 2008, 377(3): 763-768.
  10. 10.  Lim JH, Kim HJ, Komatsu K, et al. Differential regulation of Streptococcus pneumoniae induced human MUC-5AC mucin expression through distinct MAPK pathways[J]. Am J Transl Res, 2009, 1(3): 300-311.
  11. 11.  Iyoda M, Shibata T, Kawaguchi M, et al. IL-17A and IL-17F stimulate chemokines via MAPK pathways (ERK1/2 and p38 but not JNK) in mouse cultured mesangial cells: synergy with TNF-alpha and IL-1beta[J]. Am J Physiol Renal Physiol, 2010, 298(3): F779-787.
  12. 12.  Matsui T, Svensson CI, Hirata Y, et al. Release of prostaglandin E2 and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase[J]. Anesth Analg, 2010, 111(2): 554-60.
  13. 13.  Jin JO, Song MG, Kim YN, et al. The mechanism of fucoidan-induced apoptosis in leukemic cells: involvement of ERK1/2, JNK, glutathione, and nitric oxide[J]. Mol Carcinog, 2010, 49(8): 771-782.