• 四川大學(xué)華西醫(yī)院(成都,610041)1 西藏成辦分院內(nèi)分泌代謝科,2 內(nèi)分泌代謝科,3 內(nèi)分泌代謝實(shí)驗(yàn)室;

【摘要】 目的  了解不同糖代謝狀態(tài)的人群空腹及口服葡萄糖耐量實(shí)驗(yàn)(oral glucose tolerance test,OGTT)餐后胰高血糖素樣態(tài)-1(GLP-1)和葡萄糖依賴的促胰島素多態(tài)(GIP)水平。 方法  將受試者根據(jù)OGTT結(jié)果分為3組:正常糖耐量組(NGT,n=61例),糖耐量受損組(IGT,n=53)和2型糖尿病組(T2DM, n=66)。采空腹及糖餐后2 h靜脈血檢測GLP-1和GIP水平。 結(jié)果  T2DM組空腹GLP-1水平低于NGT和IGT組(P lt;0.05)。NGT和IGT的空腹GLP-1水平差異無統(tǒng)計(jì)學(xué)意義(P gt;0.05)。餐后GLP-1水平三組差異無統(tǒng)計(jì)學(xué)意義(P gt;0.05)??崭辜安秃驡IP水平在NGT、IGT和T2DM均呈逐漸增加的趨勢,而且同OGTT-0 h和OGTT-2 h血糖水平呈正相關(guān)(r=0.384,0.426;P lt;0.05)。 結(jié)論  不同的GLP-1和GIP水平也許是IGT和T2DM胰島素分泌能力不同的原因之一。
【Abstract】 Objective  To investigate the fasting, and after oral glucose tolerance test (OGTT), the postprandial levels of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) in Chinese people with different degrees of glucose tolerance. Methods  Based on the results of OGTT, 180 subjects were divided into three groups: normal glucose tolerance group (NGT group, n=61), impaired glucose tolerance group (IGT group, n=53) and type-2 diabetes mellitus group (T2DM group, n=66). Fasting venous blood and the venous blood 2 hours after OGTT was sampled to detect GLP-1 and GIP levels. Results  The fasting GLP-1 level in the T2DM group was significantly lower than that in the NGT and IGT groups (P lt;0.05). There was no significant difference in fasting GLP-1 level between NGT and IGT groups (P gt;0.05). There was no significant difference in GLP-1 level 2 hours after OGTT among all the three groups (P gt;0.05). GIP level gradually increased in the order of NGT, IGT and T2DM both before and after glucose load, and it was positively correlated with glucose levels just after OGTT and 2 hours after OGTT (r=0.384,0.426;P lt;0.05). Conclusion  Different GLP-1 and GIP levels may be one of the reasons for different insulin secretion ability between IGT and T2DM

引用本文: 鄔云紅,田浩明,張祥訊,陳香. 不同糖耐量水平人群血漿胰高血糖素樣肽-1和葡萄糖依賴的促胰島素樣多肽水平比較. 華西醫(yī)學(xué), 2011, 26(7): 1018-1021. doi: 復(fù)制

1.  Freeman JS. Role of the incretin pathway in the pathogenesis of type 2 diabetes mellitus[J]. Cleve Clin J Med, 2009,76(Suppl 5): 12-19.
2.  World Health Orgnization. Definition, diagnosis, and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus[S]. WHO/NCD/NCS/99.2ed. Geneva, World Health Orgnization, 1999.
3.  Henkel E, Menschikowski M, Koehler C, et al. Impact of glucagon response on postprandial hyperglycemia in men with impaired glucose tolerance and type 2 diabetes mellitus[J]. Metabolism, 2005, 54(9): 1168-1173.
4.  Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance[J]. Diabetes, 2008, 57(3): 678-687.
5.  Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus[J]. J Clin Invest, 1993, 91(1): 301-307.
6.  Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients[J]. Diabetes, 1993, 50(3): 609-613.
7.  Muscelli E, Mari A, Casolaro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients[J]. Diabetes, 2008, 57(5): 1340-1348.
8.  Ryskjaer J, Deacon CF, Carr RD, et al. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake[J]. Eur J Endocrinol, 2006, 155(3): 485-493.
9.  Nauck MA, El-Ouaghlidi A, Gabrys B, et al. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes[J]. Regul Pept, 2004, 122(3): 209-217.
10.  Vaag AA, Holst JJ, V?lund A, et al. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)-evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins[J]. Eur. J. Endocrinol, 1996, 135(4): 425-432.
11.  Kozawa J, Okita K, Imagawa A, et al. Similar incretin secretion in obese and non-obese Japanese subjects with type 2 diabetes[J]. Biochem Biophys Res Commun, 2010, 393(3): 410-413.
12.  Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists[J]. Best Pract Res Clin Endocrinol Metab, 2009, 23(4): 499-512.
13.  Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia[J]. Diabetologia, 2003, 46(6): 798-801.
  1. 1.  Freeman JS. Role of the incretin pathway in the pathogenesis of type 2 diabetes mellitus[J]. Cleve Clin J Med, 2009,76(Suppl 5): 12-19.
  2. 2.  World Health Orgnization. Definition, diagnosis, and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus[S]. WHO/NCD/NCS/99.2ed. Geneva, World Health Orgnization, 1999.
  3. 3.  Henkel E, Menschikowski M, Koehler C, et al. Impact of glucagon response on postprandial hyperglycemia in men with impaired glucose tolerance and type 2 diabetes mellitus[J]. Metabolism, 2005, 54(9): 1168-1173.
  4. 4.  Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance[J]. Diabetes, 2008, 57(3): 678-687.
  5. 5.  Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus[J]. J Clin Invest, 1993, 91(1): 301-307.
  6. 6.  Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients[J]. Diabetes, 1993, 50(3): 609-613.
  7. 7.  Muscelli E, Mari A, Casolaro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients[J]. Diabetes, 2008, 57(5): 1340-1348.
  8. 8.  Ryskjaer J, Deacon CF, Carr RD, et al. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake[J]. Eur J Endocrinol, 2006, 155(3): 485-493.
  9. 9.  Nauck MA, El-Ouaghlidi A, Gabrys B, et al. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes[J]. Regul Pept, 2004, 122(3): 209-217.
  10. 10.  Vaag AA, Holst JJ, V?lund A, et al. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)-evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins[J]. Eur. J. Endocrinol, 1996, 135(4): 425-432.
  11. 11.  Kozawa J, Okita K, Imagawa A, et al. Similar incretin secretion in obese and non-obese Japanese subjects with type 2 diabetes[J]. Biochem Biophys Res Commun, 2010, 393(3): 410-413.
  12. 12.  Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists[J]. Best Pract Res Clin Endocrinol Metab, 2009, 23(4): 499-512.
  13. 13.  Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia[J]. Diabetologia, 2003, 46(6): 798-801.