• 1.佳木斯大學附屬第一醫(yī)院普外一科(黑龍江佳木斯 154002);;
  • 2.青島大學附屬醫(yī)院甲狀腺外科(山東青島 266003);

目的  探討缺血再灌注小腸中DNA甲基化對小腸細胞凋亡和增殖是否具有調(diào)控作用。
方法  將35只健康雄性Wistar大鼠隨機分為正常組(n=5)、假手術組(n=5)及缺血再灌注(0、3、6、12、24h,n=5)組。利用脫氧核糖核苷酸末端轉(zhuǎn)移酶介導的缺口末端標記測定法、透射電鏡和免疫組織化學方法分別檢測細胞凋亡和細胞增殖的變化,最后通過DNA甲基化位點組織末端酶鏈接檢測法檢測DNA甲基化。
結(jié)果 ?、倥c正常組和假手術組比較,缺血再灌注組缺血再灌注后3、6及12h時在小腸絨毛上皮、黏膜固有層及隱窩上皮中凋亡細胞均明顯增加(P<0.01),且透射電鏡檢測證實,黏膜固有層的凋亡細胞主要是淋巴細胞和少量吞噬細胞。②與正常組和假手術組比較,缺血再灌注后3、6、12及24h時在小腸絨毛上皮中細胞增殖明顯(P<0.01),缺血再灌注后6h和12h時在小腸黏膜固有層和隱窩上皮中細胞增殖明顯(P<0.01)。③正常組和假手術組DNA甲基化在小腸絨毛上皮和隱窩上皮部分有弱表達;在缺血再灌注組中,小腸隱窩上皮部分DNA甲基化在近小腸干細胞部位表達最強,從隱窩上皮到絨毛上皮是以從強到弱的趨勢發(fā)生變化的。
結(jié)論  本研究的初步研究結(jié)果提示,缺血再灌注小腸中DNA甲基化可能對小腸細胞凋亡和增殖具有調(diào)控作用。

引用本文: 安樹才,王慶法,王樹卿. 缺血再灌注小腸中DNA甲基化對細胞凋亡和增殖的調(diào)控△. 中國普外基礎與臨床雜志, 2013, 20(11): 1234-1239. doi: 復制

1. Hassoun HT, Zou L, Moore FA, et al. Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 282(6):G1059-G1068.
2. An S, Hishikawa Y, Koji T. Induction of cell death in rat small intestine by ischemia reperfusion:differential roles of Fas/Fas ligand and Bcl-2/Bax systems depending upon cell types[J]. Histochem Cell Biol, 2005, 123(3):249-261.
3. Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomicmethylation causes p53-dependent apoptosis and epigenetic deregulation[J]. Nat Genet, 2001, 27(1):31-39.
4. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med, 2003, 349(21):2042-2054.
5. Rao X, Zhong J, Zhang S, et al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury[J]. Circulation, 2011, 123(25):2964-2974.
6. Westberry JM, Wilson ME. Regulation of estrogen receptor alpha gene expression in the mouse prefrontal cortex during early postnatal development[J]. Neurogenetics, 2012, 13(2):159-167.
7. Skowronski K, Dubey S, Rodenhiser D, et al. Ischemia dysregul-ates DNA methyltransferases and p16INK4a methylation in humancolorectal cancer cells[J]. Epigenetics, 2010, 5(6):547-556.
8. Hashimoto S, Koji T, Niu J, et al. Differential staining of DNA strand breaks in dying cells by non-radioactive in situ nick transla-tion[J]. Arch Histol Cytol, 1995, 58(2):161-170.
9. An S, Hishikawa Y, Liu J, et al.Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type Ⅱ alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway[J]. Apoptosis, 2007, 12(11):1989-2001.
10. Koji T, Kondo S, Hishikawa Y, et al. In situ detection of methylated DNA by histo endonuclease-linked detection of methylated DNA sites:a new principle of analysis of DNA methylation[J]. Histochem Cell Biol, 2008, 130(5):917-925.
11. Otterson MF, Nie L, Schmidt JL, et al. EUK-207 protects humanintestinal microvascular endothelial cells (HIMEC) against irradi-ation-induced apoptosis through the Bcl2 pathway[J]. Life Sci, 2012, 91(15-16):771-782.
12. Reardon C, Wang A, McKay DM. Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand-induced death[J]. J Immunol, 2008, 180(12):8316-8326.
13. Neal MD, Sodhi CP, Jia H, et al. Toll-like receptor 4 is expressedon intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis[J]. J Biol Chem, 2012, 287(44):37296-37308.
14. Riehl TE, Foster L, Stenson WF. Hyaluronic acid is radioprote-ctive in the intestine through a TLR4 and COX-2-mediated mech-anism[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(3):G309-G316.
15. Booth C, Potten CS. Gut instincts:thoughts on intestinal epithelialstem cells[J]. J Clin Invest, 2000, 105(11):1493-1499.
16. Dekaney CM, Fong JJ, Rigby RJ, et al. Expansion of intestinalstem cells associated with long-term adaptation following ileocecalresection in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(5):1013-1022.
17. Shibata D. Mistakes make history:visualizing intestinal tectonics[J]. Gastroenterology, 2008, 134(2):628-631.
18. McDonald SA, Greaves LC, Gutierrez-Gonzalez L, et al. Mech-anisms of field cancerization in the human stomach:the expansionand spread of mutated gastric stem cells[J]. Gastroenterology, 2008, 134(2):500-510.
19. Barros SP, Offenbacher S. Epigenetics:connecting environment and genotype to phenotype and disease[J]. J Dent Res, 2009, 88(5):400-408.
20. Dumitrescu RG. DNA methylation and histone modifications in breast cancer[J]. Methods Mol Biol, 2012, 863:35-45. doi:10.1007/978-1-61779-612-8_3.
21. Maegawa S, Hinkal G, Kim HS, et al. Widespread and tissuespecific age-related DNA methylation changes in mice[J]. Gen-ome Res, 2010, 20(3):332-340.
22. Kocemba K, Groen R, van Andel H, et al. Transcriptional silen-cing of the Wnt-Antagonist DKK1 by promoter methylation isassociated with enhanced Wnt signaling in advanced multiple mye-loma[J]. PLoS One, 2012, 7:e30359.
23. Hur K, Niwa T, Toyoda T, et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation[J]. Carcinogenesis, 2011, 32(1):35-41.
24. Eslaminejad MB, Fani N, Shahhoseini M. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture[J]. Cell, 2013, 15(1):1-10..
25. 李望, 錢國偉, 徐為, 等. DNA甲基化對Ki-67啟動子轉(zhuǎn)錄活性的影響[J]. 中華實驗外科雜志, 2011, 28(6):901-903.
  1. 1. Hassoun HT, Zou L, Moore FA, et al. Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 282(6):G1059-G1068.
  2. 2. An S, Hishikawa Y, Koji T. Induction of cell death in rat small intestine by ischemia reperfusion:differential roles of Fas/Fas ligand and Bcl-2/Bax systems depending upon cell types[J]. Histochem Cell Biol, 2005, 123(3):249-261.
  3. 3. Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomicmethylation causes p53-dependent apoptosis and epigenetic deregulation[J]. Nat Genet, 2001, 27(1):31-39.
  4. 4. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med, 2003, 349(21):2042-2054.
  5. 5. Rao X, Zhong J, Zhang S, et al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury[J]. Circulation, 2011, 123(25):2964-2974.
  6. 6. Westberry JM, Wilson ME. Regulation of estrogen receptor alpha gene expression in the mouse prefrontal cortex during early postnatal development[J]. Neurogenetics, 2012, 13(2):159-167.
  7. 7. Skowronski K, Dubey S, Rodenhiser D, et al. Ischemia dysregul-ates DNA methyltransferases and p16INK4a methylation in humancolorectal cancer cells[J]. Epigenetics, 2010, 5(6):547-556.
  8. 8. Hashimoto S, Koji T, Niu J, et al. Differential staining of DNA strand breaks in dying cells by non-radioactive in situ nick transla-tion[J]. Arch Histol Cytol, 1995, 58(2):161-170.
  9. 9. An S, Hishikawa Y, Liu J, et al.Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type Ⅱ alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway[J]. Apoptosis, 2007, 12(11):1989-2001.
  10. 10. Koji T, Kondo S, Hishikawa Y, et al. In situ detection of methylated DNA by histo endonuclease-linked detection of methylated DNA sites:a new principle of analysis of DNA methylation[J]. Histochem Cell Biol, 2008, 130(5):917-925.
  11. 11. Otterson MF, Nie L, Schmidt JL, et al. EUK-207 protects humanintestinal microvascular endothelial cells (HIMEC) against irradi-ation-induced apoptosis through the Bcl2 pathway[J]. Life Sci, 2012, 91(15-16):771-782.
  12. 12. Reardon C, Wang A, McKay DM. Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand-induced death[J]. J Immunol, 2008, 180(12):8316-8326.
  13. 13. Neal MD, Sodhi CP, Jia H, et al. Toll-like receptor 4 is expressedon intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis[J]. J Biol Chem, 2012, 287(44):37296-37308.
  14. 14. Riehl TE, Foster L, Stenson WF. Hyaluronic acid is radioprote-ctive in the intestine through a TLR4 and COX-2-mediated mech-anism[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(3):G309-G316.
  15. 15. Booth C, Potten CS. Gut instincts:thoughts on intestinal epithelialstem cells[J]. J Clin Invest, 2000, 105(11):1493-1499.
  16. 16. Dekaney CM, Fong JJ, Rigby RJ, et al. Expansion of intestinalstem cells associated with long-term adaptation following ileocecalresection in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(5):1013-1022.
  17. 17. Shibata D. Mistakes make history:visualizing intestinal tectonics[J]. Gastroenterology, 2008, 134(2):628-631.
  18. 18. McDonald SA, Greaves LC, Gutierrez-Gonzalez L, et al. Mech-anisms of field cancerization in the human stomach:the expansionand spread of mutated gastric stem cells[J]. Gastroenterology, 2008, 134(2):500-510.
  19. 19. Barros SP, Offenbacher S. Epigenetics:connecting environment and genotype to phenotype and disease[J]. J Dent Res, 2009, 88(5):400-408.
  20. 20. Dumitrescu RG. DNA methylation and histone modifications in breast cancer[J]. Methods Mol Biol, 2012, 863:35-45. doi:10.1007/978-1-61779-612-8_3.
  21. 21. Maegawa S, Hinkal G, Kim HS, et al. Widespread and tissuespecific age-related DNA methylation changes in mice[J]. Gen-ome Res, 2010, 20(3):332-340.
  22. 22. Kocemba K, Groen R, van Andel H, et al. Transcriptional silen-cing of the Wnt-Antagonist DKK1 by promoter methylation isassociated with enhanced Wnt signaling in advanced multiple mye-loma[J]. PLoS One, 2012, 7:e30359.
  23. 23. Hur K, Niwa T, Toyoda T, et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation[J]. Carcinogenesis, 2011, 32(1):35-41.
  24. 24. Eslaminejad MB, Fani N, Shahhoseini M. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture[J]. Cell, 2013, 15(1):1-10..
  25. 25. 李望, 錢國偉, 徐為, 等. DNA甲基化對Ki-67啟動子轉(zhuǎn)錄活性的影響[J]. 中華實驗外科雜志, 2011, 28(6):901-903.